

03/24/2006

ENSR Consulting & Engineering - NJ 20 New England Ave Piscataway, NJ 08854

Attention: Mr. Greg Micalizio

STL Edison 777 New Durham Road Edison, NJ 08817

Tel 732 549 3900 Fax 732 549 3679 www.stl-inc.com

Laboratory Results Job No. O524 - IR-Pburg

Dear Mr. Micalizio:

Enclosed are the results you requested for the following sample(s) received at our laboratory on March 10, 2006.

<u>Lab No.</u> <u>Client ID</u> <u>Analysis Required</u>

715155 476LOCK 524.2

An invoice for our services is also enclosed. If you have any questions please contact your Project Manager, David Lissy, at (732) 549-3900.

Very Truly Yours,

Michael S. Ubox

Michael J. Urban Laboratory Manager

Analytical Results Summary	1
General Information	5
Chain of Custody	5
Laboratory Chronicles	7
Methodology Review	9
Data Reporting Qualifiers	13
Non-Conformance Summary	15
GC/ MS Forms and Data (Volatiles)	17
Results Summary and Chromatograms	17
Tuning Results Summary	26
Method Blank Results Summary	41
Calibration Summary	56
Surrogate Compound Recovery Summary	96
Spike Recovery Summary	100
Internal Standard Area and RT Summary	118
Injection Log Book	123
This is the Last Page of the Document	128

Analytical Results Summary

Client ID: 476LOCK Lab Sample No: 715155

Site: IR-Pburg Lab Job No: 0524

Date Sampled: 03/10/06 Matrix: WATER Date Received: 03/10/06 Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i Lab File ID: e40868.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: uq/l</u>
Dichlorodifluoromethane Chloromethane	ND ND	0.5 0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	0.5
Chloroethane	ND	0.5
Trichlorofluoromethane	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND ND	0.5 0.5
Bromochloromethane	ND ND	0.5
Chloroform	0.6	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
Benzene	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Dibromomethane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene Toluene	ND	0.5
trans-1,3-Dichloropropene	ND ND	0.5
1,1,2-Trichloroethane	ND ND	0.5 0.5
Tetrachloroethene	ND ND	0.5
1,3-Dichloropropane	ND ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5

Client ID: 476LOCK Lab Sample No: 715155 Lab Job No: 0524

Site: IR-Pburg

Date Sampled: 03/10/06 Matrix: WATER Date Received: 03/10/06 Level: DW

Date Analyzed: 03/17/06 GC Column: DB624 Instrument ID: VOAMS5.i Purge Volume: 25.0 ml Dilution Factor: 1.0

Lab File ID: e40868.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Xylene (Total)	ND	0.5
Styrene	ND	0.5
Bromoform	ND	0.5
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
Bromobenzene	ND	0.5
1,2,3-Trichloropropane	ND	0.5
n-Propylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
m-Dichlorobenzene	ND	0.5
4-Isopropyltoluene	ND	0.5
p-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
o-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
MTBE	ND	0.5

3

Client ID: 476LOCK Lab Sample No: 715155

Site: IR-Pburg Lab Job No: 0524

Date Sampled: 03/10/06 Matrix: WATER Date Received: 03/10/06 Level: DW

Date Analyzed: 03/17/06 GC Column: DB624 Instrument ID: VOAMS5.i Lab File ID: e40868a.d Purge Volume: 25.0 ml Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	ND	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

General Information

Chain of Custody

STL EDISON777 New Durham Road
Edison, New Jersey 08817
Phone: (732) 549-3900 Fax: (732) 549-3679

EQUEST
JES
\equiv
E
~
<u>ග</u>
LYSI
⊴
Z
-
>
TOD
\succeq
S
CUST
9
CHAIN
4
CHAIN
J

Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679	5			יאסאין איני ישלאיר	- 5	PAGE OF
Name (for report and invoice)	Sampl	Hers Name (Printed)	Mer	Site/Project Identification	El Phre	
Company XV	#.O.P	(62 %)	200	State (Location of site): NJ:	NY:	Other:
		00011	0	Regulatory Program:	48/F	
Address New Salmy Ass		Analysis Turnareund Time	ANALYSIS REQUES	ANALYSIS REQUESTED (ENTER "X" BELOW TO INDICATE REQUEST	REQUEST)	LAB USE ONLY
of standard	1	Rush Charges Authorized For:	PE			930496
184	2//6	1 Week				Y5250
Sample Identification	Date	No. of.	71			Sample Numbers
47610CK	2/0/WASO	12	\ \			715155
Preservation Used: 1 = ICE, 2 = HCl, 3 = H ₂ S	= H ₂ SO ₄ , 4 = HNO ₃ , 5 =	5 = NaOH Soil:				
6 = Other, 7 :	7 = Other	Water:				
Special Instructions			25 ,	>	Water Metals Filtered (Yes/No)?	(Yes/No)?
Relinquished by Company	toped for the state of the stat	Date / Time	Received by		Company	
Relinquished by	pany	/ Date / Time	Received by		Company	
2)		_				
Relinquished by Company	pany	Date / Time	Received by		Company	
		-				
Relinquished by Company	pany	Date / Time	Received by		Company	
4)			4)		- 1	
Laboratory Certifications: New Jersey (12028),		New York (11452), Pe	Pennsylvania (68-522),	, Connecticut (PH-0200),	00), Rhode Island (132).	nd (132).

Laboratory Chronicles

INTERNAL CUSTODY RECORD AND LABORATORY CHRONICLE STL Edison

777 New Durham Road, Edison, New Jersey 08817

Job No:	O524	Site:	IR-Pburg	
Client:	ENSR Consulting & Engineering - NJ			
	VOAMS			

WATER - 524.2

Lab Sample ID	Date Sampled	Date Received	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
715155	3/10/2006	3/10/2006			3/17/2006	Deng, Lily	1425
715155	3/10/2006	3/10/2006			3/17/2006	Deng, Lily	1427
						-	
						-	

Methodology Review

Analytical Methodology Summary

Volatile Organics:

Unless otherwise specified, water samples are analyzed for volatile organics by purge and trap GC/MS as specified in EPA Method 624. Drinking water samples are analyzed by EPA Method 524.2 Rev 4.1. Solid samples are analyzed for volatile organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8260B.

Acid and Base/Neutral Extractable Organics:

Unless otherwise specified, water samples are analyzed for acid and/or base/neutral extractable organics by GC/MS in accordance with EPA Method 625. Solids are analyzed for acid and/or base/neutral extractable organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8270C.

GC/MS Nontarget Compound Analysis:

Analysis for nontarget compounds is conducted, upon request, in conjunction with GC/MS analyses by EPA Methods 624, 625, 8260B and 8270C. Nontarget compound analysis is conducted using a forward library search of the EPA/NIH/NBS mass spectral library of compounds at the greatest apparent concentration (10% or greater of the nearest internal standard) in each organic fraction (15 for volatile, 15 for base/neutrals and 10 for acid extractables).

Organochlorine Pesticides and PCBs:

Unless otherwise specified, water samples are analyzed for organochlorine pesticides and PCBs by dual column gas chromatography with electron capture detectors as specified in EPA Method 608. Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8081A for organochlorine pesticides and Method 8082 for PCBs.

Total Petroleum Hydrocarbons:

Water samples are analyzed for petroleum hydrocarbons by I.R. using EPA Method 418.1. Solid samples are prepared for analysis by soxhlet extraction consistent with the March 1990 N.J. DEP "Remedial Investigation Guide" Appendix A, page 52, and analyzed by U.S. EPA Method 418.1

Metals Analysis:

Metals analyses are performed by any of four techniques specified by a Method Code provided on each data report page, as follows:

- P Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP)
- A Flame Atomic Absorption
- F Furnace Atomic Absorption
- CV Manual Cold Vapor (Mercury)

Water samples are digested and analyzed using EPA methods provided in "Methods for Chemical Analysis of Water and Wastewater" (EPA 600/4-79-020). Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition); samples are digested according to Method 3050B "Acid Digestion of Soil, Sediments and Sludges."

Specific method references for ICP analyses are water Method - 200.7/SW846 6010B and for solid matrix - 6010B. Mercury analyses are conducted by the manual cold vapor technique specified by water Method 245.1/7470A and solid Method 7471A. Other specific Atomic Absorption method references are as follows:

Element	Water Test Method <u>Furnace</u>	Solid Test Method Furnace
Antimony	200.9	7041
Arsenic	200.9	7060A
Cadmium	200.9	7131A
Lead	200.9	7421
Selenium	200.9	7740
Thallium	200.9	7841

Cyanide:

Water samples are analyzed for cyanide using EPA Method 335.3. Cyanide is determined in solid samples as specified in the EPA Contract Laboratory Program IFB dated July 1988, revised February 1989.

Phenols:

Water samples are analyzed for total phenols using EPA Method 420.2. Total phenols are determined in water and solid samples by preparing the sample as outlined in the EPA Contract Laboratory Program IFB for cyanide, followed by a phenols determination using EPA Method 420.1.

Hexavalent Chromium:

Water samples are analyzed using EPA Method 7196A, EPA Method 7199 or (upon request) USGS -1230-35. Soil samples are subjected to alkaline digestion via EPA Method 3060A prior to analysis by EPA Method 7196A or EPA Method 7199.

Cleanup of Semivolatile Extracts:

Upon request Method 3611B Alumina Column Cleanup and/or Method 3650B Acid-Base Partition Cleanup are performed to improve detection limits by the removal of saturated hydrocarbon interferences.

Hazardous Waste Characteristics:

Samples for hazardous waste characteristics are analyzed as specified in the U.S. EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition). Specific method references are as follows:

Ignitability - Method 1020A

Corrosivity - Water pH Method 9040B Soil pH Method 9045C

Reactivity - Chapter 7, Section 7.3.3 and 7.3.4 respectively for hydrogen cyanide and hydrogen sulfide release

Toxicity - TCLP Method 1311

Miscellaneous Parameters:

Additional analyses performed on both aqueous and solid samples are in accordance with methods published in the following references:

- Test Methods for Evaluating Solid Wastes, SW-846 3rd Edition, November 1986.
- Standard Methods for the Examination of Water and Wastewater, 18th Edition.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, 1979.

Data Reporting Qualifiers

DATA REPORTING QUALIFIERS

- ND The compound was not detected at the indicated concentration.
 - J Mass spectral data indicates the presence of a compound that meets the identification criteria. The result is less than the specified detection limit but greater than zero. The concentration given is an approximate value.
 - B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
 - P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 - * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

Non-Conformance Summary

Nonconformance Summary

STL Edison Job Number: 0524

Client: ENSR Consulting & Engineering - NJ

Date: 3/22/2006

Sample Receipt:

Sample delivery conforms with requirements.

Volatile Organic Analysis (GC/MS):

All data conforms with method requirements.

I certify that the test results contained in this data package meet all requirements of NELAC both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael J.Urban Laboratory Manager

Michael S. Ubox

GC/MS Forms and Data (Volatiles)

Results Summary and Chromatograms

Client ID: 476LOCK Lab Sample No: 715155 Site: IR-Pburg

Lab Job No: 0524

Date Sampled: 03/10/06 Matrix: WATER Date Received: 03/10/06 Date Analyzed: 03/17/06 Level: DW

Purge Volume: 25.0 ml GC Column: DB624
Instrument ID: VOAMS5.i
Lab File ID: e40868.d Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: uq/l</u>
Dichlorodifluoromethane	ND	0.5
Chloromethane	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	0.5
Chloroethane	ND	0.5
Trichlorofluoromethane	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Bromochloromethane	ND	0.5
Chloroform	0.6	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
Benzene	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Dibromomethane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
1,3-Dichloropropane	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5

Client ID: 476LOCK Lab Sample No: 715155

Site: IR-Pburg Lab Job No: 0524

Date Sampled: 03/10/06 Matrix: WATER Date Received: 03/10/06

Level: DW
Purge Volume: 25.0 ml
Dilution Factor: 1.0 Date Analyzed: 03/17/06 GC Column: DB624
Instrument ID: VOAMS5.i
Lab File ID: e40868.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Xylene (Total)	ND	0.5
Styrene	ND	0.5
Bromoform	ND	0.5
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
Bromobenzene	ND	0.5
1,2,3-Trichloropropane	ND	0.5
n-Propylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
m-Dichlorobenzene	ND	0.5
4-Isopropyltoluene	ND	0.5
p-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
o-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
MTBE	ND	0.5

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40868.d

Report Date: 20-Mar-2006 13:35

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40868.d Lab Smp Id: 715155 Client Smp ID: 476 Client Smp ID: 476LOCK

Inj Date : 17-MAR-2006 16:33

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : 715155

Misc Info : 0524;1425;;LD

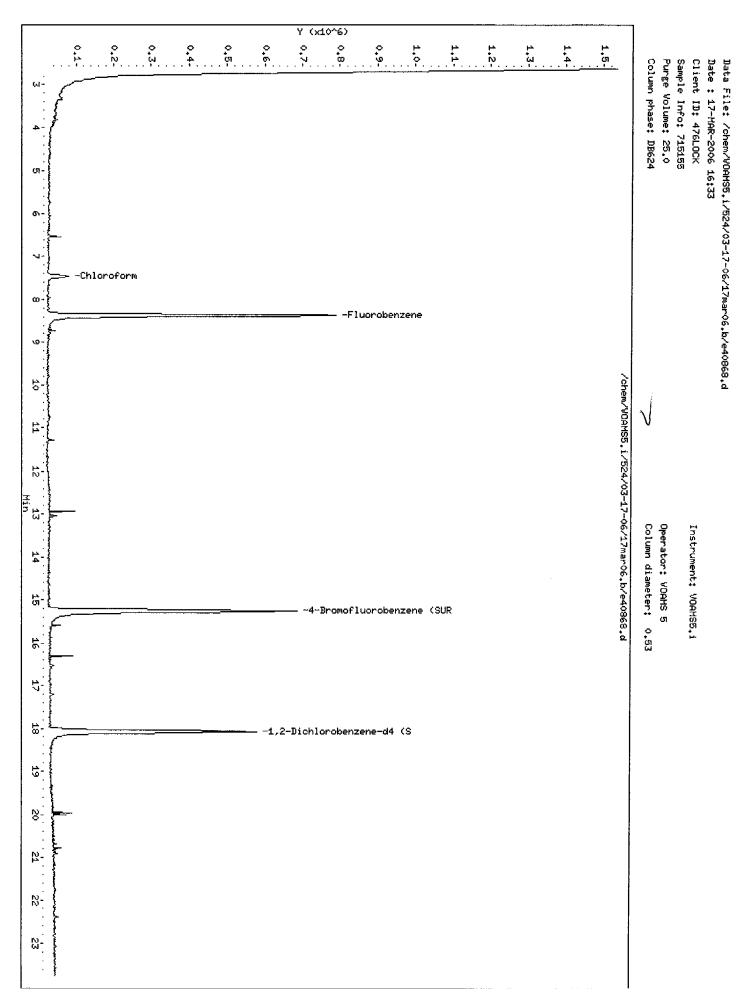
Comment

Method : /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m Meth Date : 20-Mar-2006 13:30 lily Quant Type: TSTD Cal Date : 17-MAR-2006 12:01 Cal File: e40859.d Als bottle: 17

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 524.sub

Target Version: 3.50


Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	7	Description
DF	1.00000	- 1-4-	Dilution Factor
Vo	25.00000		Sample Volume

Cpnd Variable

Local Compound Variable

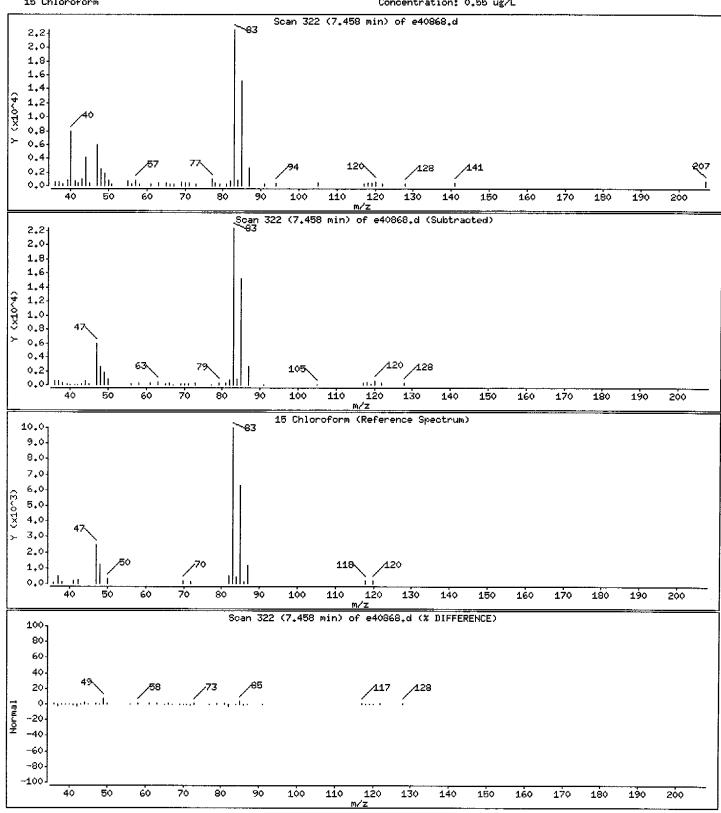
						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Ċ	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=		===	==		=======	======	
	15 Chloroform	83	7.458	7.430 (0.891)	88044	0.54683	0.55
*	2 Fluorobenzene	96	8.366	8.325 (1.000)	1433776	5 - 00000	
\$	42 4-Bromofluorobenzene (SUR)	95	15.252	15.219 (1.823)	726314	4.69990	4.7
\$	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.067	18.040 (2.159)	396581	4.33767	4.3

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40868.d

Date : 17-MAR-2006 16:33

Client ID: 476LOCK

Instrument: VOAMS5.i


Sample Info: 715155

Purge Volume: 25.0 Column phase: DB624 Operator: VOAMS 5

Column diameter: 0.53

15 Chloroform

Concentration: 0.55 ug/L

Client ID: 476LOCK Lab Sample No: 715155

Site: IR-Pburg Lab Job No: 0524

Date Sampled: 03/10/06 Date Received: 03/10/06 Date Analyzed: 03/17/06 Matrix: WATER Level: DW

Purge Volume: 25.0 ml GC Column: DB624 Instrument ID: VOAMS5.i Dilution Factor: 1.0

Lab File ID: e40868a.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: uq/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	NĎ	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40868a.d

Report Date: 20-Mar-2006 13:35

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40868a.d Lab Smp Id: 715155 Client Smp ID: 476LOCK Inj Date: 17-MAR-2006 16:33 Client Smp ID: 476LOCK

Operator : VOAMS 5 Smp Info : 715155 Inst ID: VOAMS5.i

Misc Info: 0524;1427;;LD

Comment

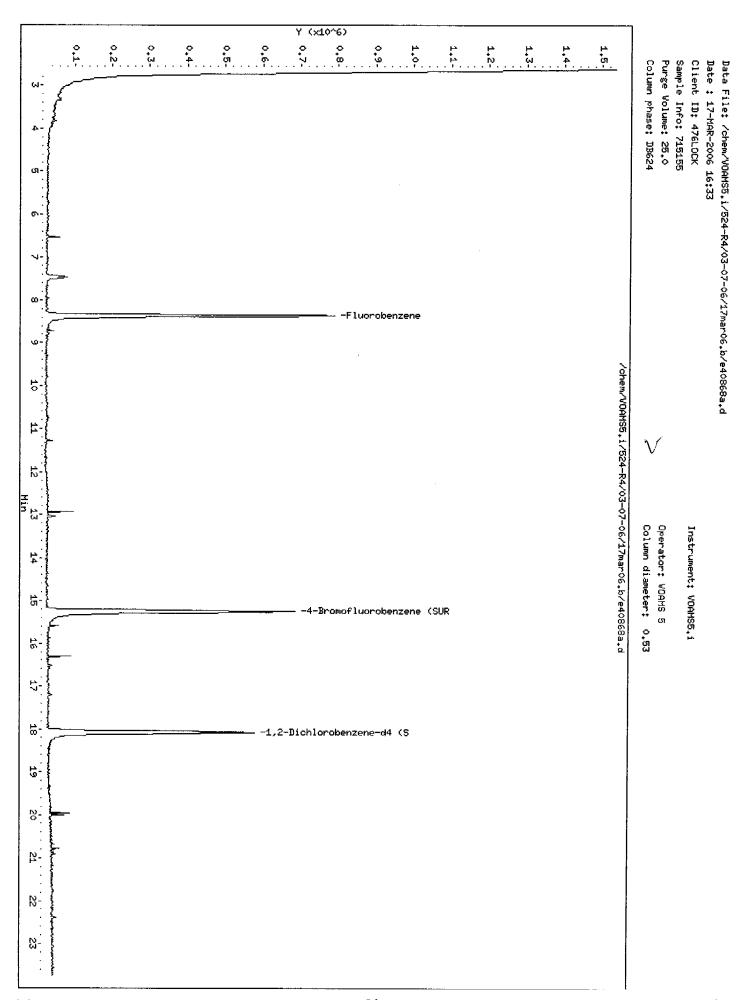
: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4 04.m Method

Meth Date : 20-Mar-2006 13:34 lily Quant Type: ISTD Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d

Als bottle: 17

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub


Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF Vo	1.00000	Dilution Factor Sample Volume

Cpnd Variable Local Compound Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==		======		
* 2 Fluorobenzene	96	8.366	8.336 (1.000)	1450458	5.00000	
\$ 42 4-Bromofluorobenzene (SUR)	95	15.252	15.226 (1.823)	726314	4.33204	4.3
\$ 57 1,2-Dichlorobenzene-d4 (\$UR)	152	18.067	18.044 (2.159)	396581	4.00589	4.0

Tuning Results Summary

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40852 BFB Injection Date: 03/17/06

Instrument ID: VOAMS5 BFB Injection Time: 0752

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	=======================================	
50	15.0 - 40.0% of mass 95	20.0
75	30.0 - 80.0% of mass 95	45.5
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	69.8
175	5.0 - 9.0% of mass 174	5.1 (7.3)1
176	95.0 - 101.0% of mass 174	67.5 (96.7)1
177	5.0 - 9.0% of mass 176	4.3 (6.4)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

		LAB	LAB	DATE	TIME
	CLIENT ID	SAMPLE No.	FILE ID	ANALYZED	ANALYZED
	=========	=======================================	=========	========	========
01	ESTD002	ESTD002	E40853	03/17/06	0823
02	ESTD005	ESTD005	E40855	03/17/06	0954
03	ESTD020	ESTD020	E40856	03/17/06	1025
04	ESTD040	ESTD040	E40857	03/17/06	1055
05	ESTD001	ESTD001	E40859	03/17/06	1201
06	1425BS	1425BS	E40860	03/17/06	1233
07	1425BSD	1425BSD	E40861	03/17/06	1303
80	EV076	EV076	E40864	03/17/06	1433
09					
10	<u> </u>				
11					
12					
13		-			
14					
15			W		
16					
17					
18					
19					
20					
21					
22					

page 1 of 1

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40852 BFB Injection Date: 03/17/06

Instrument ID: VOAMS5 BFB Injection Time: 0752

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====	=======================================	
50	15.0 - 40.0% of mass 95	20.0
75	30.0 - 80.0% of mass 95	45.5
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	69.8
175	5.0 - 9.0% of mass 174	$5.1 \overline{(7.3)1}$
176	95.0 - 101.0% of mass 174	67.5 (96.7)1
177	5.0 - 9.0% of mass 176	4.3 (6.4)2
'	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

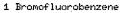
		LAB	LAB	DATE	TIME
	CLIENT ID	SAMPLE No.	FILE ID	ANALYZED	ANALYZED
01	ESTD002	ESTD002	E400E3	02/17/06	0000
	1		E40853	03/17/06	0823
02	ESTD005	ESTD005	E40855	03/17/06	0954
03	ESTD020	ESTD020	E40856	03/17/06	1025
04	ESTD040	ESTD040	E40857	03/17/06	1055
05	ESTD001	ESTD001	E40859	03/17/06	1201
06	EV076	EV076	E40864	03/17/06	1433
07	476LOCK	715155	E40868	03/17/06	1633
08		· .		,,	
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19		-			
20					
21					· · · · · · · · · · · · · · · · · · ·
22					
44		l I			

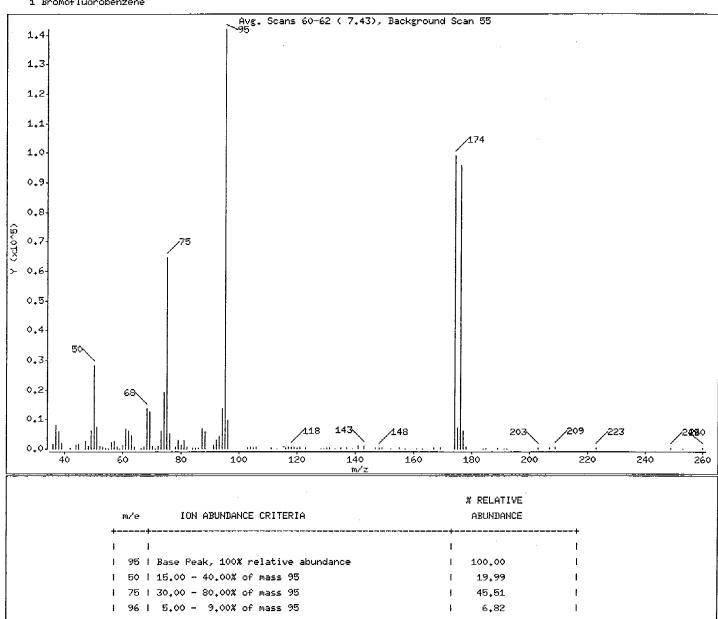
page 1 of 1

Data File: /chem/VOAMS5,i/524/03-17-06/17mar06.b/e40852.d

Date : 17-MAR-2006 07:52

Client ID:


Instrument: VOAMS5.i


Sample Info: EBFB076

Operator: VOAMS 8

Column phase: DB-624

Column diameter: 0.53

m/e	ION ABUNDANCE CRITERIA		* RELATIVE ABUNDANCE	
++				+ !
l 95 l	Base Peak, 100% relative abundance	1	100,00	1
1 50 1	15.00 - 40.00% of mass 95	I	19,99	1
1 75 1	30,00 - 80,00% of mass 95	1	45,51	l .
1 96 1	5.00 - 9.00% of mass 95	i i	6,82	1
I 173 I	Less than 2.00% of mass 174	F.	0,00 (0,00)	ŀ
1 174 1	50,00 - 100,00% of mass 95	1	69,84	ı
175	5.00 - 9.00% of mass 174	1	5.11 (7.32)	1
1 176 I	95,00 - 101,00% of mass 174	1	67.51 (96.67)	ì
1 177 I	5,00 - 9,00% of mass 176	1	4,33 (6,41)	1

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40852.d

Date : 17-MAR-2006 07:52

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076

Operator: VOAMS 8

Column phase: DB-624

Column diameter: 0.53

Data File: e40852.d

Spectrum: Avg. Scans 60-62 (7.43), Background Scan 55

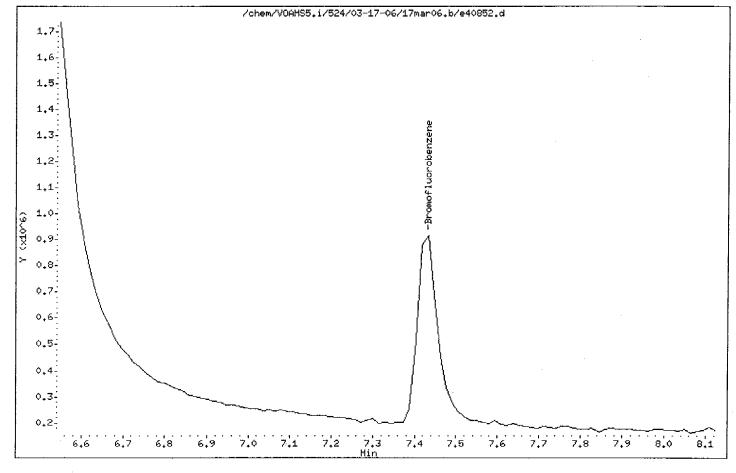
Location of Maximum: 95.00 Number of points: 102

1 1 1 1 +	36,00 37,00 38,00 39,00 42,00 44,00 45,00 47,00 48,00	1720 8018 5948 1908 198 1185 1783 2683		67,00 68,00 69,00 70,00 71,00 72,00 73,00	13578 12598 1020 7	1 1 1		606 199 694	152.00 155.00 157.00 161.00 163.00	39 264 5 44 45
1 1 1 + 1 1	38.00 39.00 42.00 44.00 45.00 47.00	5948 1908 198 1185 1783 2683	 	69,00 70,00 71,00 72,00	12598 1020 7	1	105,00 106,00	199 694	157,00 161,00	5 44
1 1 + 1 1	39,00 42,00 44,00 45,00 47,00	1908 198 1185 1783 2683	 - - 	70.00 71.00 72.00	1020 7	 -+-	106,00	694	161.00	44
] + 	42,00 44,00 45,00 47,00	198 1185 1783 2683	 - 	71.00 72.00	7	1	•		•	
+ 	44.00 45.00 47.00	1185 1783 2683	 	72,00		+	111.00	188	163.00	45
 	45,00 47,00	1783 2683	1		1131					
I	47,00	2683		73.00		ı	113.00	92	167.00	355
				10100	6047	I	116.00	271	169.00	253
ŀ	48.00	974	ŀ	74.00	19344	I	117.00	682	174.00	99112
		707	ł	75.00	64576	I	118.00	765	175.00	7256
1	49,00	6319	ı	76,00	5212	1	119.00	623	176.00	95808
+ I	50.00	28368	-+- I	78,00	769	1	120,00	198	177,00	6144
1	51,00	7400	ı	79.00	3040	ı	121,00	679	178,00	563
1	52.00	881	t	80,00	1174	ı	123.00	178	184,00	114
E	53.00	758	ı	81.00	3026	ı	128,00	16	185,00	180
1	54,00	213	1	82.00	490	1	129.00	67	189,00	420
+	 55,00	146	-+- 	84.00	403	·+·	130,00	409 i	191.00	 93
1	56.00	2318	ı	85.00	240	ı	131.00	242	192.00	96
1	57,00	2616	ı	86.00	208	ļ	133.00	8 1	203.00	439
1 1	58,00	795	ı	87.00	6843	Į	135.00	287	207,00	194
1	59.00	112	ł	88.00	5800	i	137,00	187	209.00	562
+	 50.00	1355	-+- !	91.00	1206	·+·	139.00		223,00	198
	61.00	6798	ı	92,00	2965	ſ	141.00	966 I	249,00	172
	62.00	6317		93,00	4375	1	143.00	1098 I	253,00	95
	63.00	4510	ı	94,00	13623	ı	147.00		260,00	217
1	64.00	534	ı	95,00	141888	1	148,00	437		
 	66.00	249	+-	96,00	9673	+-	149,00	205 I		

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40852.d

Date : 17-MAR-2006 07:52

Client ID:


Instrument: VOAMS5.i

Sample Info: EBFB076

Operator: VOAMS 8

Column phase: DB-624

Column diameter: 0.53

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40735A BFB Injection Date: 03/07/06

Instrument ID: VOAMS5 BFB Injection Time: 0948

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 96 173 174 175 176	15.0 - 40.0% of mass 95 30.0 - 80.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 100.0% of mass 95 5.0 - 9.0% of mass 174 95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 174	19.8 46.2 100.0 6.5 0.0 (0.0)1 66.8 5.0 (7.5)1 64.3 (96.3)1 4.3 (6.7)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT ID	LAB SAMPLE No.	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 09 10 11	CLIENT ID ===================================		l I		
13 14 15 16 17 18 19 20 21 22					

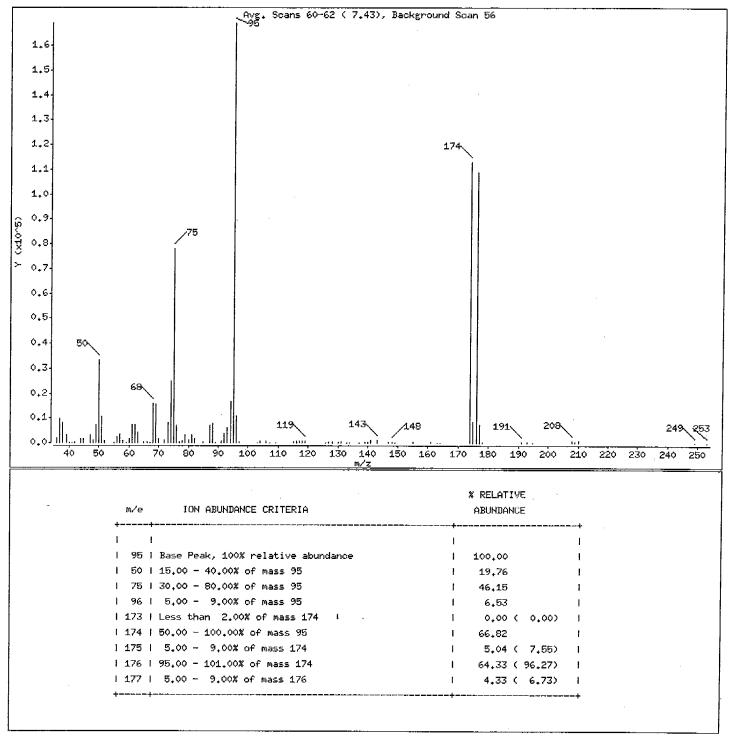
page 1 of 1

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40735a.d

Date : 07-MAR-2006 09:48

Client ID:

Instrument: VOAMS5.i


Sample Info: EBFB066a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

1 Bromofluorobenzene

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40735a.d

Date : 07-MAR-2006 09:48

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB066a

Operator: VOAMS 5

Column phase: DB-624 Column diameter: 0.53

Data File: e40735a.d

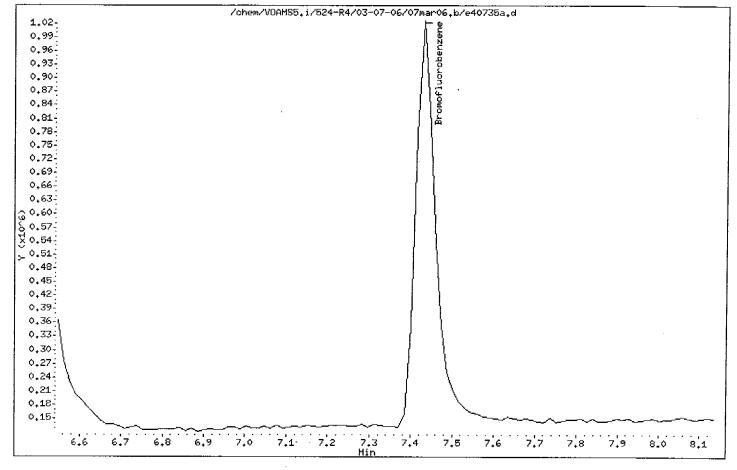
Spectrum: Avg. Scans 60-62 (7.43), Background Scan 56

Location of Maximum: 95.00 Number of points: 94

Υ.	1	m/z	Υ.	Y	m/z	Y	m/z	Υ .	Y	m/z	
 23 I	102	141,00	2 1	16672	94,00	304	65.00	2 2	2032	36.00	1
.0 1	121	143,00	i 0	168960	95,00	199	66,00	2	9772	37,00	1
85 I	28	147,00	1 1	11031	96,00	125	67,00	7	7997	38,00	1
31 I	53:	148,00	5 1	465	97,00	15833	68,00	9 1	3019	39,00	1
'2 I		149.00	9	99 	103.00	15407	69,00	L +-	161	40,00	! +-
.7 1	417	155,00	8 1	928	104.00	1705	70.00	2	122	41.00	ı
54 I	25	161,00	2 1	732	106.00	1031	72.00	2	202	42.00	ı
3 1	18	163.00	3 1	183	107.00	8000	73,00	2 1	1602	44.00	ı
8 I	188	164.00	5 I	175	109.00	24856	74.00	3 I	1428	45.00	1
ı4 1 ــــــــــــــــــــــــــــــــــــ	11290	174,00	0 1	360	115,00	77976	75.00	5 1	2996	47.00	ا ـــ
1 1	852:	175,00	4 I	604	116,00	6876	76,00) I	1239	48,00	1
6 I	108696	176.00	0 1	760	117,00	488 1	77,00	5 1	7205	49,00	F
.8 I	7318	177,00	6 1	696	118,00	586 I	78.00	1 1	33384	50.00	1
7 1	517	178.00	4	934	119,00	3112	79,00	1 (10330	51,00	I
1!	471	191.00	2	182	126.00	1355	80,00	1	644	52,00	1
ф I	300	193.00	 4	524	127.00	3014	81.00	5	155	55,00	1
9 I	9	195,00	3 1	343	128.00	1438 i	82.00	i 1	2516	56.00	ł
4 1	774	208,00	3 1	403	130.00	411 l	85.00)	3620	57.00	J
8 1	358	209.00	3 1	203	131.00	7014 l	87.00	F 1	584	58,00	1
6 I	726	210,00	4 1	124	133.00	7818 I	88,00	1	104	59,00	ا ـــ
o 1	170	249.00	6 1	86	134,00	99	89,00)	1729	60.00	1
2 1	112	253.00	4 I	194	137.00	737 1	91,00	1	7560	61,00	1
1			0 I	360	139.00	3982	92,00	H	7204	62,00	ı
1			О Т	480	140,00	602 9	93,00	3 1	4433	63,00	ŧ

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40735a.d

Date : 07-MAR-2006 09:48


Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB066a

Operator: VOAMS 5

Column phase: DB-624 Column diameter: 0.53

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40852A BFB Injection Date: 03/17/06

Instrument ID: VOAMS5 BFB Injection Time: 0752

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		
50	15.0 - 40.0% of mass 95	20.0
75	30.0 - 80.0% of mass 95	45.5
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.8
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 100.0% of mass 95	69.8
175	5.0 - 9.0% of mass 174	5.1 (7.3)1
176	95.0 - 101.0% of mass 174	67.5 (96.7)1
177	5.0 - 9.0% of mass 176	4.3 (6.4)2
<u> </u>	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	CLIENT ID	LAB SAMPLE No.	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	ESTD076-R4 1427BS 1427BSD-R4 EV076A	SAMPLE No. ====================================	FILE ID ====================================	ANALYZED ======== 03/17/06 03/17/06 03/17/06 03/17/06	ANALYZED ====================================
21 22					

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab File ID: E40852A BFB Injection Date: 03/17/06

Instrument ID: VOAMS5 BFB Injection Time: 0752

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0% of mass 95	20.0	
75	30.0 - 80.0% of mass 95	45.5	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.8	
173	Less than 2.0% of mass 174	0.0 (0.0)1	
174	50.0 - 100.0% of mass 95	69.8	
175	5.0 - 9.0% of mass 174	5.1 (7.3)1	
176	95.0 - 101.0% of mass 174	67.5 (96.7)1	
177	5.0 - 9.0% of mass 176	4.3 (6.4)2	
	1-Value is % mass 174 2-Value is % mass	176	

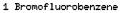
THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

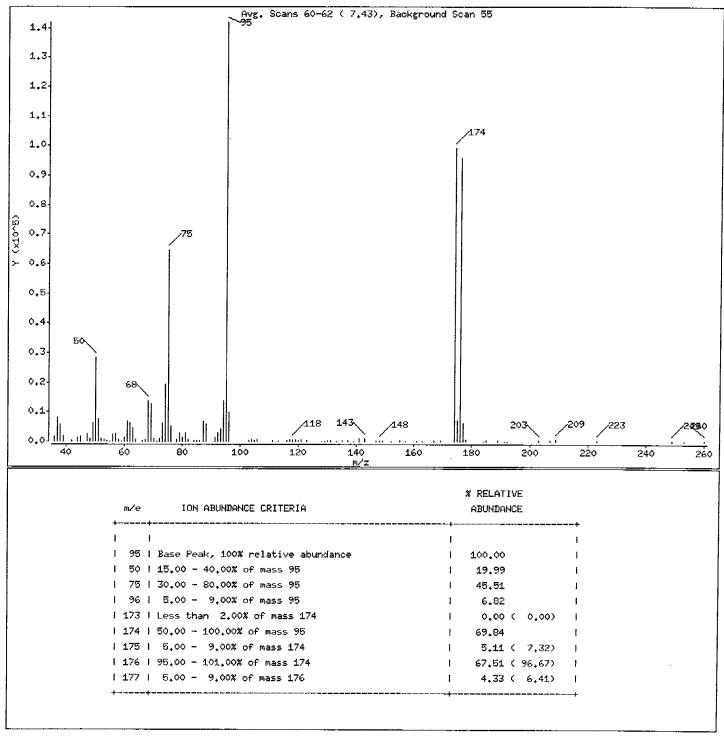
	CLIENT ID	LAB SAMPLE No.	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01 02 03 04 05 06 07 08 90 11 12 13 14 15 17 18 19 20	CLIENT ID ESTD076-R4 EV076A 476LOCK				
21 22					

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40852a.d

Date : 17-MAR-2006 07:52

Client ID:


Instrument: VOAMS5.i


Sample Info: EBFB076a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40852a.d

Date : 17-MAR-2006 07:52

Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076a

Operator: VOAMS 5

Column phase: DB-624

Column diameter: 0.53

Data File: e40852a.d

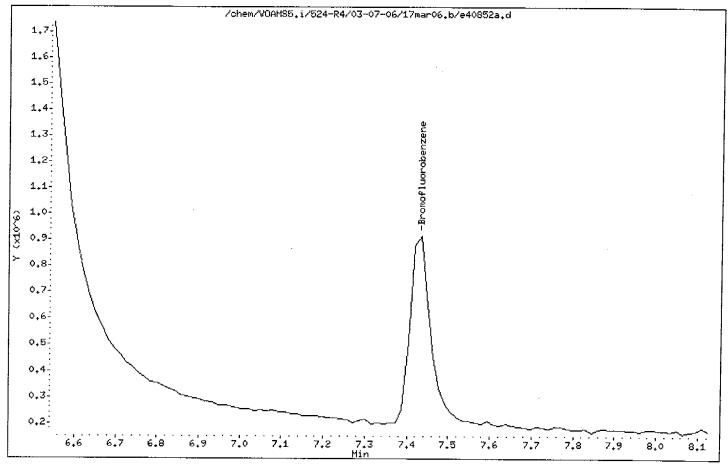
Spectrum: Avg. Scans 60-62 (7.43), Background Scan 55

Location of Maximum: 95.00 Number of points: 102

Ÿ	m/Z	Υ .	m/z	Υ.	m/z	Υ.	m/z	
39	152,00	318	103,00	732	67.00	1720 I	36.00	1
264	155.00	606 I	104.00	13578	68.00	8018	37.00	i
5	157.00	199	105.00	12598 l	69,00	5948 I	38,00	ļ
44	161,00	694 I	106.00	1020 I	70.00	1908 I	39,00	ı
45	163,00	188 l	111.00	7 1	71.00	198	42,00	1
355	167.00	92 I	113,00	1131	72,00	1185 l	44.00	+- I
253	169,00	271 l	116,00	6047 I	73,00	1783 I	45,00	l
99112	174,00	682 I	117,00	19344	74,00	2683 1	47,00	ı
7256	175,00	765	118.00	34576 1	75,00	934 1	48,00	i
95808	176,00	623 I	119.00	5212 I	76.00	6319	49,00	i
6144	177.00	 198 I	120,00	769 I	78,00		50,00	+-
563	178.00			3040 I	79.00	7400 [51.00	
114	184.00		123.00	1174	80.00	881 I	52,00	
180	185.00	16	128.00	3026 I	81.00	758	53,00	
420	189,00	67	129,00	490 I	82.00	213 I	54,00	
 93	191.00	409 I	130,00	403 I	84,00	 146 l	55.00	
96	192.00	242	131.00	240 I	85,00	2318 I	56.00	
439	203.00	8 1	133.00	208 1	86,00	2616 1	57.00	
194	207.00	287 1	135.00	6843 I	87,00	795 I	58.00	
562	209.00	187 l	137,00	5800 l	88.00	112	59,00.	
198	223.00	74 I	139,00	1206 I	91,00	1355 l	60.00	
172	249.00	966	141.00	2965	92.00	6798 I	61.00	
95	253.00		143.00	4375 I	93.00	6317	62,00	
217	260.00	243	147,00	.3623 I	94.00	4510	63,00	
		437	148.00	1888	95.00	534 I	64,00	
·-··		+- 205	149.00	9673 I	96.00	249 I	66,00	

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40852a.d

Date : 17-MAR-2006 07:52


Client ID:

Instrument: VOAMS5.i

Sample Info: EBFB076a

Operator: VOAMS 5

Column phase: DB-624 Column diameter: 0.53

Method Blank Results Summary

VOLATILE METHOD BLANK SUMMARY

EV076	
-------	--

Matrix: WATER

Date Analyzed: 03/17/06

Level: DW

Time Analyzed: 1433

Lab File ID: E40864

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT ID.	LAB SAMPLE NO	LAB FILE ID	TIME ANALYZED
	=======================================	=======		=======
01 02	1425BS 1425BSD	1425BS 1425BSD	E40860 E40861	1233 1303
03	1425850	1425880	E40001	1303
04				
05 06				
07				
08 09				
10	· · · · · · · · · · · · · · · · · · ·			
11				
12 13				
14				
15 16				
17			···	
18				
19 20				
21	-			
22				
23 24				
25				
26 27	***			
28		·		
29				
30	100000			

COMMENTS:		

VOLATILE METHOD BLANK SUMMARY

EV076

Matrix: WATER

Date Analyzed: 03/17/06

Level: DW

Time Analyzed: 1433

Lab File ID: E40864

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
	=======================================	=======		=======
01	476LOCK	715155	E40868	1633
02				
03			-	
04				
05				
06				
07				
08				
09				
10				·
11				
12				
13			-	
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
201				

COMMENTS:		

Client ID: EV076 Lab Sample No: EV076

Site: Lab Job No: 1425

Date Sampled: Matrix: WATER Date Received: Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e40864.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result Units: ug/l	Quantitation Limit Units: uq/l
<u>raramotor</u>	onics. uq/i	onics. uq/1
Dichlorodifluoromethane	ND	0.5
Chloromethane	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	0.5
Chloroethane	ND	0.5
Trichlorofluoromethane	ND	0.5
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Bromochloromethane	ND	0.5
Chloroform	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
Benzene	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Dibromomethane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
1,3-Dichloropropane	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5

Client ID: EV076 Lab Sample No: EV076

Site: Lab Job No: 1425

Date Sampled: Matrix: WATER
Date Received: Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml GC Column: DB624 Dilution Factor: 1.0

Instrument ID: VOAMS5.i
Lab File ID: e40864.d

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Xylene (Total)	ND	0.5
Styrene	ND	0.5
Bromoform	ND	0.5
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
Bromobenzene	ND	0.5
1,2,3-Trichloropropane	ND	0.5
n-Propylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
m-Dichlorobenzene	ND	0.5
4-Isopropyltoluene	ND	0.5
p-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
o-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	1.0
1,2,4-Trichlorobenzene	NĎ	0.5
Hexachlorobutadiene	ND	0.5
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
TBA	ND	50
MTBE	ND	0.5
Freon TF	ND	0.5
p-Ethyltoluene	ND	0.5
p-Diethylbenzene	ND	0.5
1,2,4,5-Tetramethylbenzene	ND	0.5
Isopropanol	ND	100
n-Propanol	ND	250
2-Methylnaphthalene	ND	0.5
Dimethylnaphthalene (total)	ND	0.5

Client ID: EV076

Site:

Lab Sample No: EV076

Lab Job No: 1425

Date Sampled: Matrix: WATER Date Received: Level: DW

Date Analyzed: 03/17/06

GC Column: DB624
Instrument ID: VOAMS5.i
Lab File ID: e40864.d

Purge Volume: 25.0 ml Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS (cont'd) METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: uq/l</u>
Vinyl Acetate	ND	0.5
Hexane	ND	0.5
1,4-Dioxane	ND	500
Cyclohexane	ND	1.0
Ethyl Acetate	ND	1.0

Client ID: EV076

Lab Sample No: EV076

Site:

Lab Job No: 1425

Date Sampled:
Date Received:
Date Analyzed: 03/17/06

Matrix: WATER Level: DW

Date Analyzed: 03/17/06 GC Column: DB624

Purge Volume: 25.0 ml Dilution Factor: 1.0

Instrument ID: VOAMS5.i Lab File ID: e40864.d

VOLATILE ORGANICS - GC/MS TENTATIVELY IDENTIFIED COMPOUNDS METHOD 524.2

COMPOUND NAME	RT EST. CONC. ug/l		·
1. NO VOLATILE ORGANIC COMPOUNDS FOUND	= =====	=========	===:
2.			
• •			
= ·			
J	_		
o.	_		
/ ·			
o			
9.			
0			
· 土 ·	-		
4.	_		
3	_		
	_		
5			
6	_		
7	-		
8	-		
9.	-[
1.	_		
1. 2. 3.	-		
3	_		
	_		
J.			-
0.	-		
• •			
0.			
J			
0.			

TOTAL ESTIMATED CONCENTRATION

0.0

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40864.d

Report Date: 20-Mar-2006 11:37

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40864.d

Lab Smp Id: EV076

Inj Date : 17-MAR-2006 14:33

Operator : VOAMS 5

Inst ID: VOAMS5.i

Smp Info : EV076

Misc Info :

Comment

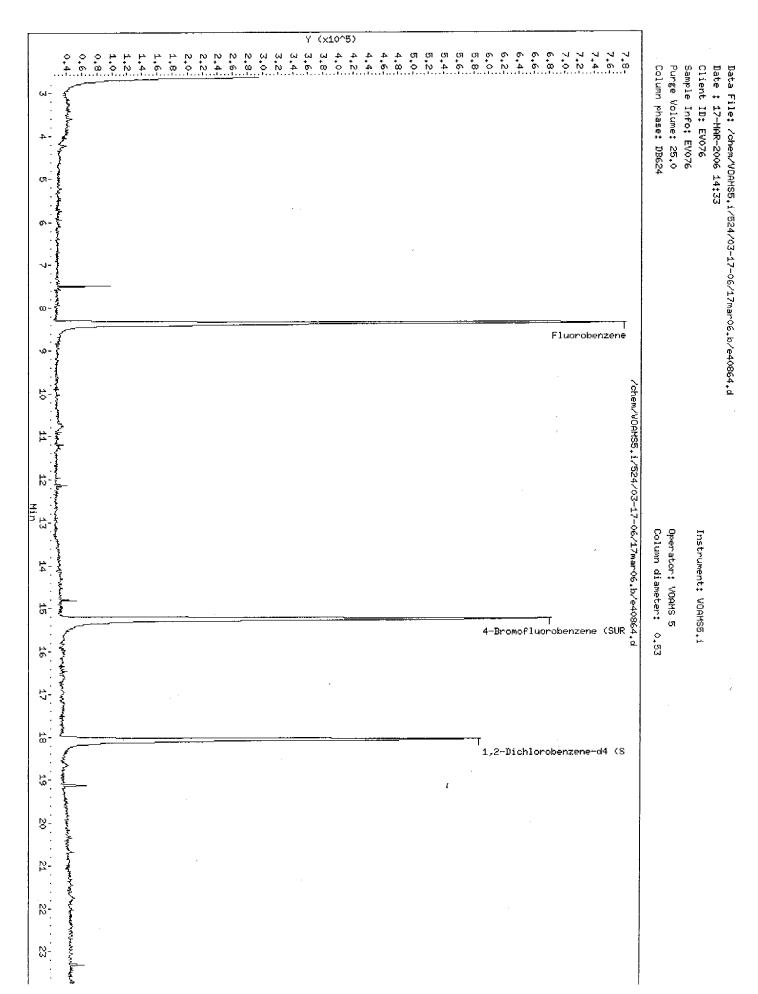
: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524 2 05.m Method

Quant Type: $\overline{I}S\overline{T}D$ Meth Date : 17-Mar-2006 12:21 lily

Cal Date: 17-MAR-2006 12:01
Als bottle: 13
Dil Factor: 1.00000
Integrator: HP RTE Cal File: e40859.d QC Sample: BLANK

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2


Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

	,				CONCENTRA	ations
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	==		~~~~===		
* 2 Fluorobenzenc	96	8.361	8.325 (1.000)	1377022	5.00000	
\$ 42 4-Bromofluorobenzene (SUR)	95	15.247	15.219 (1.824)	708552	4.77394	4.8
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	1.52	18.062	18.040 (2.160)	408381	4 65083	4.6

VOLATILE METHOD BLANK SUMMARY

EV076A

Matrix: WATER

Date Analyzed: 03/17/06

Level: DW

Time Analyzed: 1433

Lab File ID: E40864A

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	CLIENT ID.	SAMPLE NO	FILE ID	ANALYZED
	=======================================	=======		=======
01	1427BS	1427BS	E40862	1333
02	1427B\$D-R4	1427BSD-R4	E40863	1403
03				
04				
05				
06 07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21			<u> </u>	
22 23				
24				
25				
26	<u> </u>			
27	The second of th			
28				
29				
30				

COMMENTS:		

VOLATILE METHOD BLANK SUMMARY

EV076A

Matrix: WATER

Date Analyzed: 03/17/06

Level: DW

Time Analyzed: 1433

Lab File ID: E40864A

Heated Purge (Y/N) N

Instrument ID: VOAMS5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	CLIENT ID.	LAB SAMPLE NO	LAB FILE ID	TIME ANALYZED
01	476LOCK	715155	E40868A	1633
02				
03				
04				
05				
06				
07				
80				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23	-			
24				
25				·
26				
27				
28			-	
29				
30				l

COMMENTS:			

Lab Sample No: **EV076A** Lab Job No: 1427 Client ID: EV076A

Site:

Date Sampled: Matrix: WATER Date Received: Level: DW

Date Analyzed: 03/17/06 Purge Volume: 25.0 ml Dilution Factor: 1.0 GC Column: DB624 Instrument ID: VOAMS5.i

Lab File ID: e40864a.d

VOLATILE ORGANICS - GC/MS METHOD 524.2

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: uq/l</u>
Acetone	ND	2.5
2-Butanone	ND	2.5
4-Methyl-2-pentanone	ND	2.5
2-Hexanone	ND	2.5
Carbon Disulfide	ND	2.5
Diethyl Ether	ND	2.5
Iodomethane	ND	2.5
Allyl Chloride	ND	2.5
Acrylonitrile	ND	25
Propionitrile	ND	25
Methyl Acrylate	ND	2.5
Methacrylonitrile	ND	2.5
Tetrahydrofuran	ND	2.5
1-Chlorobutane	ND	2.5
Methyl Methacrylate	ND	2.5
2-Nitropropane	ND	25
Chloroacetonitrile	ND	25
1,1-Dichloropropanone	ND	2.5
Ethyl Methacrylate	ND	2.5
trans-1,4-Dichloro-2-butene	ND	2.5
Pentachloroethane	ND	2.5
Hexachloroethane	ND	2.5
Nitrobenzene	ND	25

Client ID: **EV076A**Site:

Lab Samp
Lab Job N

Date Sampled:
Date Received:
Date Analyzed: 03/17/06
GC Column: DB624

Instrument ID: VOAMS5.i Lab File ID: e40864a.d Lab Sample No: **EV076A**Lab Job No: 1427

Matrix: WATER Level: DW

Purge Volume: 25.0 ml Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS TENTATIVELY IDENTIFIED COMPOUNDS METHOD 524.2

COMPOUND NAME	RT	EST. CONC.	
1. NO VOLATILE ORGANIC COMPOUNDS FOUND 2.			
4. 5.			
6. 7. 8.			
10			
13 14.			
15. 16. 17.			
19			
22			
25. 26.			
28. 29.			
30.			

TOTAL ESTIMATED CONCENTRATION

0.0

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40864a.d

Report Date: 20-Mar-2006 13:35

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40864a.d Lab Smp Id: EV076A Client Smp ID: EV076A

Inj Date: 17-MAR-2006 14:33
Operator: VOAMS 5
Smp Info: EV076a Inst ID: VOAMS5.i

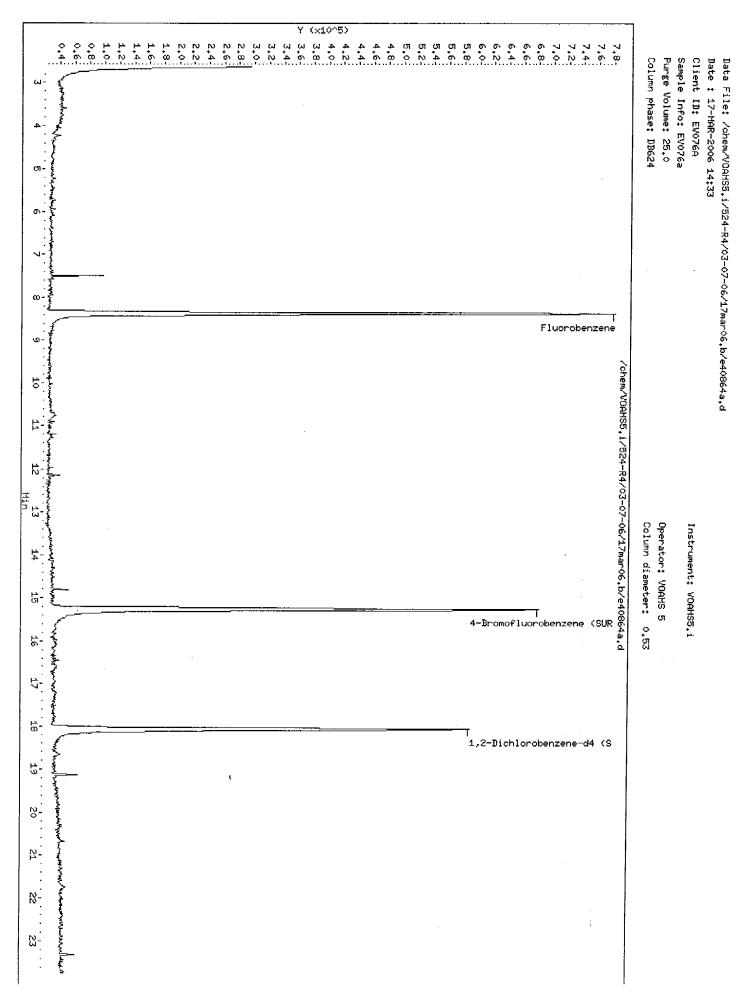
Misc Info : Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:34 lily Quant Type: ISTD Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d Als bottle: 13 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2


Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
==			==			======	======.
*	2 Fluorobenzene	96	8.361	8.336 (1.000)	1398660	5.00000	
\$	42 4-Bromofluorobenzene (SUR)	95	15.247	15.226 (1.824)	708552	4.38261	4.4
\$	57 l,2-Dichlorobenzene-d4 (SUR)	152	18.062	18.044 (2.160)	408381	4-27785	4.3

Calibration Summary

VOLATILE ORGANICS INITIAL CALIBRATION DATA METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/17/06 03/17/06

Heated Purge: (Y/N) N Calibration Time(s): 0823 1201

LAB FILE ID: RRF1: E40859 RRF2: E40853 RRF5: E40855 RRF20: E40856 RRF40: E40857						
COMPOUND	RRF1	RRF2	RRF5	RRF20	RRF40	
Dichlorodifluoromethane	0.450	0,412	0.404	0.508	0.415	
Chloromethane	0.296	0.294	0.281		0.287	
Vinyl Chloride	0.326	0.301	0.298			
Bromomethane	0.322	0.274	0.280			
Chloroethane	0.224	0.201	0.187			
Trichlorofluoromethane	0.628	0.596	0.580	0.693		
1,1-Dichloroethene	0.464	0.436	0.440	0.514		
Methylene Chloride	0.245	0.220	0.206	0.245	0.219	
Methylene Chloridetrans-1,2-Dichloroethene	0.337	0.310	0.311	0.362		
1.1-Dichloroethane	0.622	0.574	0.564	0.656	0.582	
cis-1,2-Dichloroethene	0.342	0.294	0.298	0.347	0.309	
2,2-Dichloropropane	0.522	0.492	0.487	0.560	0.484	
Bromochloromethane	0.126	0.118	0.117	0.142	0.129	
Chloroform	0.560	0.541	0.529	0.625	0.552	
l,1,1-Trichloroethane	0.576	0.529	0.513	0.608	0.533	
1,1-Dichloropropene	0.517	0.448	0.459	0.541	0.475	
Carbon Tetrachloride	0.521	0.495	0.491	0.580	0.500	
Benzene	0.907	0.856	0.841	0.979	0.866	
1,2-Dichloroethane	0.195	0.186	0.191	0.235	0.206	
Trichloroethene	0.397	0.376	0.379	0.446	0.390	
richloroethene 1,2-Dichloropropane	0.321	0.283	0.288	0.348	0.308	
Dibromomethane	0.147	0.134	0.133	0.164	0.144	
Bromodichloromethane	0.412	0.398	0.413	0.498		
cis-1,3-Dichloropropene	0.381	0.343	0.352	0.446	0.400	
Toluene	0.694	0.635	0.625	0.738	0.664	
trans-1,3-Dichloropropene	0.226	0.223	0.225	0.295	0.271	
1,1,2-Trichloroethane	0.130	0.120	0.121	0.152	0.134	
Fetrachloroethene	0.528	0.456	0.467	0.558	0.504	
1,3-Dichloropropane	0.290	0.244	0.247	0.302	0.272	
Dibromochloromethane	0.274	0.258	0.259	0.334	0.298	
L,2-Dibromoethane	0.211	0.198	0.196	0.238	0.214	
Chlorobenzene	0.796	0.761	0.745	0.885	0.800	
1,1,1,2-Tetrachloroethane	0.363	0.334	0.332	0.393	0.355	
Ethylbenzene	1.459	1.361	1.361	1.576	1.380	
Ethylbenzene Kylene (Total)	0.566	0.490	0.508	0.595	0.534	
Styrene	0.736	0.671	0.699	0.842	0.764	
Bromoform	0.122	0.120	0.124	0.162	0.151	
Isopropylbenzene	1.622	1.463	1.458	1.692	1.485	
1,1,2,2-Tetrachloroethane	0.182	0.165	0.168	0.204	0.181	

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/17/06 03/17/06

Heated Purge: (Y/N) N Calibration Time(s): 0823 1201

LAB FILE ID: RRF1: E408 RRF20: E40		RF2: E4085 RF40: E408		RF5: E40855	5
COMPOUND	RRF1	RRF2	RRF5	RRF20	RRF40
Bromobenzene	0.334	0.301	0.293	0.364	0.331
1,2,3-Trichloropropane	0.047	0.046		0.051	0.045
n-Propylbenzene	1.823	1.690	1.682	1.953	1.701
2-Chlorotoluene	1.110	0.994	0.987	1.135	0.994
1,3,5-Trimethylbenzene	1.219	1.102	1.090	1.275	1.110
4-Chlorotoluene	1.186	1.071	1.072	1.272	1.090
tert-Butylbenzene	1.363	1.244	1.209	1.400	1.240
1,2,4-Trimethylbenzene	1.103	1.052	1.046	1.220	1.075
sec-Butylbenzene	1.725	1.580	1.540	1.802	1.563
m-Dichlorobenzene	0.636	0.576	0.560	0.685	0.620
4-Isopropyltoluene	1.498	1.379	1.353	1.572	1.364
p-Dichlorobenzene	0.627	0.572	0.545	0.660	0.584
n-Butylbenzene	1.377	1.274	1.227	1.422	1.222
o-Dichlorobenzene	0.490	0.440		0.523	
1,2-Dibromo-3-Chloropropane_	0.032	0.026	0.025	0.032	0.030
1,2,4-Trichlorobenzene	0.330	0.284	0.290	0.381	0.357
Hexachlorobutadiene	0.309	0.259	0.260	0.308	0.285
Naphthalene	0.331	0.270	0.269	0.356	0.323
1,2,3-Trichlorobenzene TBA	0.255	0.211	0.211	0.274	0.253
MTBE	0.384	0.321	0.324	0.387	0.351
Freon TF	0.607	0.557	0.551	0.657	0.551
p-Ethyltoluene					
p-Diethylbenzene					
1,2,4,5-Tetramethylbenzene					
Isopropanol					
n-Propanol				. —	
2-Methylnaphthalene		***************************************		·	
Dimethylnaphthalene (total)					
Vinyl Acetate					
Hexane					·
1,4-Dioxane					
Cyclohexane					
Ethyl Acetate					
	=======	=======	=======		
4-Bromofluorobenzene (SUR)	0.532	0.517	0.509	0.612	0.525
1,2-Dichlorobenzene-d4 (SU \overline{R})	0.313	0.300	0.298	0.366	0.316

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/17/06 03/17/06

Heated Purge: (Y/N) N Calibration Time(s): 0823 1201

	l .	COEFFICENT	l I
COMPOUND	CURVE	A1	OR R^2
	=====	ř	
Dichlorodifluoromethane	AVRG	0.43800218	
Chloromethane	AVRG	0.29669732	
Vinyl Chloride	AVRG	0.31873393	7.4*
Bromomethane	AVRG	0.29686404	8.1*
Chloroethane	AVRG	0.20534614	7.9*
Trichlorofluoromethane	AVRG	0.61460343	7.9*
1,1-Dichloroethene	AVRG	0.45946281	7.0*
Methylene Chloride	AVRG	0.22705227	7.7*
trans-1,2-Dichloroethene	AVRG	0.32800902	6.6*
1,1-Dichloroethane	AVRG	0.59957707	6.4*
cis-1,2-Dichloroethene	AVRG	0.31824367	7.8*
2,2-Dichloropropane	AVRG	0.50901448	6.3*
Bromochloromethane	AVRG	0.12628554	7.9*
Chloroform	AVRG	0.56148274	6.7*
1,1,1-Trichloroethane	AVRG	0.55189864	7.1*
1,1-Dichloropropene	AVRG	0.48793656	8.1*
Carbon Tetrachloride	AVRG	0.51747427	7.1*
Benzene	AVRG	0.88998088	6.2*
1,2-Dichloroethane	AVRG	0.20249489	9.7*
Trichloroethene	AVRG	0.39782110	7.2*
1,2-Dichloropropane	AVRG	0.30975157	8.5*
Dibromomethane	AVRG	0.14425456	8.6*
Bromodichloromethane	AVRG	0.43267265	9.3*
cis-1,3-Dichloropropene	AVRG	0.38421690	10.7*
Toluene	AVRG	0.67125588	6.8*
trans-1,3-Dichloropropene	AVRG	0.24804895	13.4*
1,1,2-Trichloroethane	AVRG	0.13140277	9.8*
Tetrachloroethene	AVRG	0.50265365	8.4*
1,3-Dichloropropane	AVRG	0.27099835	9.4*
Dibromochloromethane	AVRG	0.28463970	11.3*
1,2-Dibromoethane	AVRG	0.21168406	8.0*
Chlorobenzene	AVRG	0.79742786	6.8*
1,1,1,2-Tetrachloroethane	AVRG	0.35525251	7.0*
Ethylbenzene	AVRG	1.42747429	6.5*
Xylene (Total)	AVRG	0.53869844	7.9*
Styrene	AVRG	0.74226256	8.9*
Bromoform	AVRG	0.13599205	14.1*
Isopropylbenzene	AVRG	1.54407817	6.9*
1,1,2,2-Tetrachloroethane	AVRG	0.17996822	8.5*

^{*} Compound with required maximum % RSD value.

^{**} Compound with required minimum RRF value.

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/17/06 03/17/06

Heated Purge: (Y/N) N Calibration Time(s): 0823 1201

		COPPETCENT	%RSD
COMPOUND	CURVE	COEFFICENT A1	OR R^2
COMPOUND	CORVE	====================================	OR R 2
Bromobenzene	AVRG	0.32467867	======= *8.8
1,2,3-Trichloropropane	AVRG	0.04637684	6.5*
n-Propylbenzene	AVRG	1.76977523	6.6*
2-Chlorotoluene	AVRG	1.04390799	6.9*
1,3,5-Trimethylbenzene	AVRG	1.15930326	
4-Chlorotoluene	AVRG	1.13855117	7.1* 7.8*
	ľ		
tert-Butylbenzene	AVRG	1.29116459	6.6*
1,2,4-Trimethylbenzene	AVRG	1.09934663	6.5*
sec-Butylbenzene	AVRG	1.64224269	7.0*
m-Dichlorobenzene	AVRG	0.61537326	8.1*
4-Isopropyltoluene	AVRG	1.43310706	6.7*
p-Dichlorobenzene	AVRG	0.59758541	7.7*
n-Butylbenzene	AVRG	1.30447551	7.0*
o-Dichlorobenzene	AVRG	0.46985964	8.2*
1,2-Dibromo-3-Chloropropane	AVRG	0.02922481	11.6*
1,2,4-Trichlorobenzene	AVRG	0.32867096	12.7*
Hexachlorobutadiene	AVRG	0.28420987	8.6*
Naphthalene	AVRG	0.30963964	12.5*
1,2,3-Trichlorobenzene	AVRG	0.24078718	11.7*
TBA	AVRG		
MTBE	AVRG	0.35364717	9.0*
Freon TF	AVRG	0.58454293	8.0*
p-Ethyltoluene	AVRG		
p-Diethylbenzene	AVRG		
1,2,4,5-Tetramethylbenzene	AVRG	12	
Isopropanol - —	AVRG		
n-Propanol	AVRG		
2-Methylnaphthalene	AVRG		
Dimethylnaphthalene (total)	AVRG		
Vinyl Acetate	AVRG		
Hexane	AVRG		
1,4-Dioxane	AVRG		
Cyclohexane	AVRG		
Ethyl Acetate	AVRG		
=======================================	=====		=======
4-Bromofluorobenzene (SUR)	AVRG	0.53891999	7.7*
1,2-Dichlorobenzene-d4 (SUR)	AVRG	0.31883362	7.7° 8.7*
-,- DIGHTOLONGHIC GT (DUR)	17771	0.51005502	0.7"

^{*} Compound with required maximum % RSD value.
** Compound with required minimum RRF value.

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40859.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40859.d

Lab Smp Id: ESTD001

Inj Date : 17-MAR-2006 12:01

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD001

Misc Info : Comment

Method

: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m : 20-Mar-2006 13:30 lily Quant Type: ISTD Meth Date : 20-Mar-2006 13:30 lily

Cal Date : 17-MAR-2006 12:01 Cal File: e40859.d Als bottle: 8 Calibration Sample, Level: 1

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
		====	==		======		0000777
1	Dichlorodifluoromethane	85	2.911	2.910 (0.349)	122157	1.00000	1.0
3	Chloromethane	50	3.177	3.175 (0.380)	80186	1.00000	1.00
4	Vinyl Chloride	62	3.397	3.395 (0.407)	88490	1.00000	1.0
5	Bromomethane	94	3.897	3.880 (0.466)	87275	1.00000	1.1
6	Chloroethane	64	4.058	4.026 (0.486)	60746	1.00000	1.1
7	Trichlorofluoromethane	101	4.483	4.467 (0.537)	170474	1.00000	. 1.0
8	1,1-Dichloroethene	61	5.128	5.112 (0.614)	125777	1.00000	1.0
111	Freon TF	101	5.187	5.156 (0.621)	16456 7	1.00000	1.0
9	Methylene Chloride	84	5.715	5.699 (0.684)	66515	1.00000	1.1
110	MTBE	73	6.052	6.022 (0.724)	104318	1.00000	1.1
10	trans-1,2-Dichloroethene	96	6.052	6.036 (0.724)	91340	1.00000	1.0
11	1,1 Dichloroethane	63	6.521	6.491 (0.781)	168884	1.00000	1.0
12	cis-1,2-Dichloroethene	96	7.137	7.122 (0.854)	92690	1.00000	1.1
13	2,2-Dichloropropane	77	7.166	7.136 (0.858)	141529	1.00000	1.0
14	Bromochloromethane	128	7.400	7.371 (0.886)	34082	1.00000	0.99
15	Chloroform	83	7.445	7.430 (0.891)	151895	1.00000	1.00

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40859.d Report Date: 20-Mar-2006 13:30

					MUQMA	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==			======	
16 1,1,1-Trichloroethane	97	7.679	7.664 (0.919)	156156	1,00000	1.0
17 1,1-Dichloropropene	75	7.840	7.826 (0.939)	140207	1.00000	1.0
18 Carbon Tetrachloride	117	7.870	7.855 (0.942)	141287	1.00000	1.0
20 1,2-Dichloroethane	62	8.061	8.046 (0.965)	52812	1.00000	0.96
19 Benzene	78	8.075	8.046 (0.967)	246165	1.00000	1.0
* 2 Fluorobenzene	96	8.354	8.325 (1.000)	1356384	5.00000	
21 Trichloroethene	95	8.764	8.736 (1.049)	107801	1.00000	1.00
22 1,2-Dichloropropane	63	9.014	9.000 (1.079)	87096	1.00000	1.0
23 Dibromomethane	93	9.175	9.147 (1.098)	39944	1.00000	1.0
24 Bromodichloromethane	83	9.322	9.293 (1.116)	111682	1.00000	0.95
25 cis-1,3 Dichloropropene	75	9.879	9.865 (1.183)	103260	1.00000	0.99
26 Toluene	92	10.377	10.350 (1.242)	188409	1.00000	1.0
27 trans-1,3-Dichloropropene	75	10.641	10.599 (1.274)	61177	1.00000	0.91
28 1,1,2-Trichloroethane	83	10.935	10.907 (1.309)	35231	1.00000	0.99
30 1,3-Dichloropropane	76	11.228	11.200 (1.344)	78597	1.00000	1.1
29 Tetrachloroethene	166	11.243	11.230 (1.346)	143377	1.00000	1.0
31 Dibromochloromethane	129	11.624	11.611 (1.391)	74234	1.00000	0.96
32 1,2-Dibromoethane	107	11.917	11.875 (1.427)	57225	1.00000	1.00
33 Chlorobenzene	112	12.870	12.843 (1.541)	215830	1.00000	1.00
34 1,1,1,2-Tetrachloroethane	131	13.002	12.975 (1.556)	98590	1.00000	1.0
35 Ethylbenzene	91	13.061	13.048 (1.563)	395927	1.00000	1.0
36 m+p-Xylene	106	13.325	13.298 (1.595)	316606	2.00000	2.1
37 o-Xylene	106	14.234	14.207 (1.704)	143682	1.00000	1.0
39 Styrene	104	14-264	14.236 (1.707)	199645	1.00000	0.99
40 Bromoform	173	14.630	14.618 (1.751)	33256	1.00000	0.90
41 Isopropylbenzene	105	14.938	14.926 (1.788)	439988	1.00000	1.0
\$ 42 4-Bromofluorobenzene (SUR)	95	15.232	15.219 (1.823)	721473	5.00000	4.9
43 1,1,2,2-Tetrachloroethane	83	15.422	15.410 (1.846)	49295	1.00000	1.0
45 1,2,3-Trichloropropane	110	15.555	15.513 (1.862)	12660	1.00000	1.0
44 Bromobenzene	156	15.540	15.528 (1.860)	90748	1.00000	1.0
46 n-Propylbenzene	91	15.672	15.660 (1.876)	494585	1.00000	1.0
47 2-Chlorotoluene	91	15.848	15.836 (1.897)	301187	1.00000	1.1
48 1,3,5-Trimethylbenzene	105	15.966	15.954 (1.911)	330772	1.00000	1.0
49 4-Chlorotoluene	91	16.025	16.013 (1.918)	321893	1.00000	1.0
50 tert-Butylbenzene	119	16.553	16.541 (1.981)	369825	1.00000	1.0
51 1,2,4-Trimethylbenzene	105	16.641	16.630 (1.992)	299320	1.00000	1.0
52 sec-Butylbenzene	105	16.949	16.938 (2.029)	468005	1.00000	. 1.0
53 m-Dichlorobenzene	146	17.184	17.173 (2.057)	172528	1.00000	1.0
54 4-Isopropyltoluene	119	17.213	17.202 (2.061)	406250	1.00000	1.0
55 p-Dichlorobenzene	146	17.346	17.335 (2.076)	170175	1.00000	1.0
56 n-Butylbenzene	91	18.021	18.010 (2.157)	373588	1.00000	1.0
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.050	18.040 (2.161)	424744	5.00000	4 - 9
58 o-Dichlorobenzene	146	18.080	18.084 (2.164)	133020	1-00000	1.0
59 1,2-Dibromo-3-Chloropropane	75	19.620	19.640 (2.349)	8828	1.00000	1.1
60 1,2,4-Trichlorobenzene	180	21.366	21.372 (2.558)	89573	1.00000	1.0
61 Hexachlorobutadiene	225	21.734	21.725 (2.602)	83883	1.00000	1.1
62 Naphthalene	128	21.939	21.931 (2.626)	89703	1.00000	1.1.

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40859.d Report Date: 20-Mar-2006 13:30

					AUOMA	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	· MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==			======	
63 1,2,3-Trichlorobenzene	180	22.512	22.489 (2.695)	69079	1.00000	1.0
M 38 Xvlene (Total)	100			460288	3.00000	3.1

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40853.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40853.d

Lab Smp Id: ESTD002

Inj Date : 17-MAR-2006 08:23

Inst ID: VOAMS5.i Operator : VOAMS 5

Smp Info : ESTD002

Misc Info :

Comment

Method: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m

Meth Date: 20-Mar-2006 13:30 lily Quant Type: TSTD

Cal Date: 17-MAR-2006 08:23 Cal File: e40853.d

Als bottle: 2 Calibration Sample,

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: al

Calibration Sample, Level: 2

Compound Sublist: all.sub

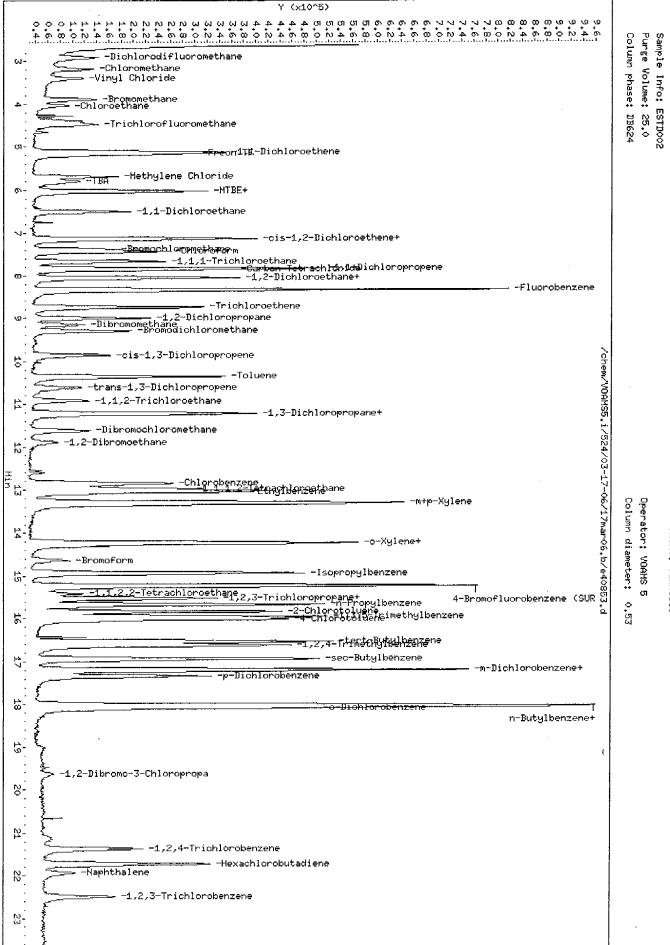
Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
		
DF	1.00000	Dilution Factor
Vo ·	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable


					AMOUNTS	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=======================================	====	==	eranee socata	=======	======	======
l Dichlorodifluoromethane	85	2.910	2.910 (0.350)	233355	2.00000	1.9
3 Chloromethane	50	3.175	3.175 (0.381)	166349	2.00000	2.0
4 Vinyl Chloride	62	3.395	3.395 (0.408)	170147	2.00000	1.9
5 Bromomethane	94	3.880	3.880 (0.466)	154930	2.00000	1.8
6 Chloroethane	64	4.026	4.026 (0.484)	113826	2.00000	2.0
7 Trichlorofluoromethane	101	4.467	4.467 (0.537)	337174	2.00000	1.9
8 1,1-Dichloroethene	61	5.112	5.112 (0.614)	246540	2.00000	1.9
111 Freon TF	101	5.156	5.156 (0.619)	315365	2.00000	1.9
9 Methylene Chloride	84	5.699	5.699 (0.685)	124239	2.00000	1.9
110 MTBE	73	6.022	6.022 (0.723)	181657	2.00000	1.8
10 trans-1,2-Dichloroethene	96	6.036	6.036 (0.725)	175682	12.00000	1.9
11 1,1-Dichloroethane	63	6.491	6.491 (0.780)	324727	2.00000	1.9
12 cis-1,2-Dichloroethene	96	7.122	7.122 (0.855)	166678	2.00000	1.8
13 2,2-Dichloropropane	77	7.136	7.136 (0.857)	278278	2.00000	1.9
14 Bromochloromethane	128	7.371	7.371 (0.885)	66510	2.00000	. 1.9
15 Chloroform	83	7.430	7.430 (0.892)	306165	2.00000	1.9

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40853.d Report Date: 20-Mar-2006 13:30

						NUOMA	ITS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
7777	===	==			=======	======	
16 1,1,1-Trichloroethane	97	7.664		(0.921)	299495	2.00000	1.9
<pre>17 1,1-Dichloropropene</pre>	75	7.826		(0.940)	253623	2.00000	1.8
18 Carbon Tetrachloride	117	7.855		(0.944)	280236	2.00000	1.9
20 1,2-Dichloroethane	62	8.046		(0.966)	105385	2.00000	1.8
19 Benzene	78	8.046		(0.966)	484478	2.00000	1.9
* 2 Fluorobenzene	96	8.325		(1.000)	1414562	5.00000	
21 Trichloroethene	95	8.736	8.736	(1.049)	213059	2.00000	1.9
22 1,2-Dichloropropane	63	9.000	9.000	(1.081)	160133	2.00000	1.8
23 Dibromomethane	93	9.147	9.147	(1.099)	75666	2.00000	1.8
24 Bromodichloromethane	83	9.293	9.293	(1.116)	225187	2.00000	1.8
25 cis·1,3-Dichloropropene	75	9.865	9.865	(1.185)	194023	2.00000	1.8
26 Toluene	92	10.350	10.350	(1.243)	359450	2.00000	1.9
27 trans-1,3-Dichloropropene	75	10.599	10.599	(1.273)	126249	2.00000	1.8
28 1,1,2-Trichloroethane	83	10.907	10.907	(1.310)	68019	2.00000	. 1.8
30 1,3-Dichloropropane	76	11.200	11.200	(1.345)	137827	2.00000	1.8
29 Tetrachloroethene	166	11.230	11.230	(1.349)	257909	2.00000	1.8
31 Dibromochloromethane	129	11.611	11.611	(1.395)	145875	2.00000	1.8
32 1,2-Dibromoethane	107	11.875	11.875	(1.426)	112185	2.00000	1.9
33 Chlorobenzene	112	12.843	12.843	(1.543)	430608	2.00000	1.9
34 1,1,1,2-Tetrachloroethane	131	12.975	12.975	(1.559)	188746	2.00000	1.9
35 Ethylbenzene	91	13.048	13.048	(1.567)	770339	2.00000	1.9
36 m+p-Xylene	106	13.298	13.298	(1.597)	575283	4.00000	3.6
37 o-Xylene	106	14.207	14.207	(1.707)	257234	2.00000	1.8
39 Styrene	104	14.236	14.236	(1.710)	379705	2.00000	1.8
40 Bromoform	173	14.618	14.618	(1.756)	68104	2.00000	1.8
41 Isopropylbenzene	105	14.926	14.926	(1.793)	827808	2.00000	1.9
\$ 42 4-Bromofluorobenzene (SUR		15.219	15.219	(1.828)	731958	5.00000	4.8
43 1,1,2,2-Tetrachloroethane		15.410	15.410	(1.851)	93297	2.00000	1.8
45 1,2,3-Trichloropropane	110	15.513	15.513	(1.863)	26294	2.00000	2.0
44 Bromobenzene	156	15.528		(1.865)	170508	2.00000	1.8
46 n-Propylbenzene	91	15.660		(1.881)	956011	2.00000	1.9
47 2-Chlorotoluene	91	15.836		(1.902)	562308	2.00000	1.9
48 1,3,5-Trimethylbenzene	105	15.954	15.954		623609	2,00000	1.9
49 4-Chlorotoluene	91	16.013		(1.923)	606233	2.00000	1.9
50 tert-Butylbenzene	119	16.541		(1.987)	703746	2.00000	1.9
51 1,2,4-Trimethylbenzere	105	16.630	16.630		595055	2.00000	1.9
•	105		16.938		894308	2.00000	1.9
52 sec-Butylbenzene	146		17.173		325733	2.00000	1.9
53 m-Dichlorobenzene	119		17.202		780545	2.00000	1.9
54 4-Isopropyltoluene			17.335		323398	2.00000	1.9
55 p-Dichlorobenzene	146			(2.163)	721190	2.00000	2.0
56 n-Butylbenzene	91	18.010		(2.163)	424142	5.00000	4.7
\$ 57 1,2 Dichlorobenzene-d4 (S		18.040					
58 o-Dichlorobenzene	146	18.084		(2.172)	249220	2.00000	1.9
59 1,2-Dibromo-3-Chloropropa			19.640		14755	2.00000	1.8
60 1,2,4-Trichlorobenzene	180	21.372		(2.567)	161002	2.00000	1.7
61 Hexachlorobutadiene	225		21.725		146795	2.00000	1.8
62 Naphthalene	128	21.931	21.931	(2.634)	152890	2.00000	1.7

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40853.d Report Date: 20-Mar-2006 13:30

					NUOMA	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	=== =	1211			=======	======
63 1,2,3-Trichlorobenzene	180	22.489	22.489 (2.701)	119402	2.00000	1.8
M 38 Xvlene (Total)	100			832517	6.00000	5.5

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d Lab Smp Id: ESTD005

Inj Date : 17-MAR-2006 09:54

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD005

Misc Info : Comment

Method : /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m Meth Date : 20-Mar-2006 13:30 lily Quant Type: TSTD Cal Date : 17-MAR-2006 09:54 Cal File: e40855.d

Als bottle: 4 Calibration Sample, Level: 3

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name Value		Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compound	ds	MASS	RТ	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	=======================================	====	==			44.44	======
1 Di	ichlorodifluoromethane	85	2.924	2.910 (0.350)	596406	5.00000	4.6
3 Ch	hloromethane	50	3.203	3.175 (0.384)	414904	5.00000	4.7
4 Vi	inyl Chloride	62	3.423	3.395 (0.410)	440313	5.00000	4.7
5 Br	romomethane	94	3.907	3.880 (0.468)	413593	5.00000	4.7
6 Ch	hloroethane	64	4.054	4.026 (0.485)	275543	5.00000	4.5
7 Tr	richlorofluoromethane	101	4.494	4.467 (0.538)	855235	5.00000	4.7
8 1,	,1-Dichloroethene	61	5.139	5.112 (0.615)	649214	5.00000	4.8
111 Fr	reon TF	101	5.184	5.156 (0.621)	812329	5.00000	4.7
9 Me	ethylene Chloride	84	5.712	5.699 (0.684)	303956	5.00000	4.5
110 MT	rbē	73	6.049	6.022 (0.724)	478169	5.00000	4.6
10 tı	rans-1,2-Dichloroethene	96	6.049	6.036 (0.724)	458797	5.00000	4.7
11 1,	,1-Dichloroethane	63	6.518	6.491 (0.780)	831679	5.00000	4.7
12 ci	is-1,2-Dichloroethene	96	7.134	7.122 (0.854)	439805	5.00000	4.7
13 2,	,2-Dichloropropane	77	7.149	7.136 (0.856)	718603	5.00000	4.8
14 Br	romochlóromethane	128	7.398	7.371 (0.886)	173300	5.00000	4.6
15 Ch	nloroform	83	7.442	7.430 (0.891)	780072	5.00000	4.7

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d Report Date: 20-Mar-2006 13:30

							AMOUN	ITS
		QUANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
-	x = x = a = = = = = = = = = = = = = = =		==			=======		#=====
16 1,1,	,1-Trichloroethane	97	7.677	7.664	(0.919)	757225	5.00000	4.6
	-Dichloropropene	75	7.838	7.826	(0.938)	677387	5.00000	4.7
18 Carr	oon Tetrachloride	117	7.868	7.855	(0.942)	724823	5.00000	4.7
20 1,2-	-Dichloroethané	62	8.059	8.046	(0.965)	281571	5.00000	4.7
19 Benz	zene	78	8.073	8.046	(0.967)	1240422	5.00000	4.7
* 2 Fluc	probenzene	96	8.352	8.325	(1.000)	1475052	5.00000	
21 Trio	chloroethene	95	8.763	8.736	(1.049)	558741	5.00000	4.8
22 1,2-	-Dichloropropane	63	9.012	9.000	(1.079)	425174	5.00000	4.6
23 Dibi	romomethane	93	9.174	9.147	(1.098)	196176	5.00000	4.6
	modichloromethane	83	9.320	9.293	(1.116)	608725	5.00000	4 . 8
25 cis-	-1,3-Dichloropropene	75	9.878	9.865	(1.183)	518858	5.00000	4.6
26 Tolu	aene	92	10.361	10.350	(1.241)	921777	5.00000	4.6
27 tran	ns-1,3-Dichloropropene	75	10.626	10.599	(1.272)	332215	5.00000	4.5
	,2-Trichloroethane	83	10.919	10.907	(1.307)	178524	5-00000	4.6
30 1,3-	-Dichloropropane	76	11.212	11.200	(1.342)	364818	5.00000	4.6
29 Teti	rachloroethene	166	11.242	11.230	(1.346)	688981	5.00000	4.6
31 Dib:	romochloromethane	129	11.623	11.611	(1.392)	382660	5.00000	4.6
32 1,2-	-Dibromoethane	107	11.887	11.875	(1.423)	289509	5.00000	4.6
33 Chlo	orobenzene	112	12.855	12.843	(1.539)	1098757	5.00000	4.7
. 34 1,1,	,1,2-Tetrachloroethane	131	12.987	12.975	(1.555)	489384	5.00000	4.7
35 Ethy	ylbenzene	91	13.046	13.048	(1.562)	2007644	5.00000	4.8
36 m+p-		106	13.310	13.298	(1.594)	1557723	10.0000	9.4
37 o-Xy	=	106	14.219	14.207	(1.702)	691682	5.00000	4.7
39 Styr		104	14.234	14.236	(1.704)	1030622	5.00000	4.7
40 Bron		173	14.630	14.618	(1.752)	182925	5.00000	4.6
41 Ison	propylbenzene	105	14.923	14.926	(1.787)	2150274	5.00000	4.7
\$ 42 4-BI	romofluorobenzene (SUR)	95	15.231	15.219	(1.824)	750332	5.00000	4.7
43 1,1,	,2,2-Tetrachloroethane	83	15.422	15.410	(1.847)	248363	5.00000	4.7
45 1,2,	,3-Trichloropropane	110	15.525	15.513	(1.859)	62890	5.00000	4.6
	nobenzene	156	15.525	15.528	(1.859)	431964	5.00000	4.5
46 n-Pr	ropylbenzene	91	15.672	15.660	(1.876)	2481384	5.00000	4.8
	nlorotoluene	91	15.834	15.836	(1.896)	1455842	5.00000	4 - 7
48 1,3,	,5-Trimethylbenzene	105	15.951	15.954	(1.910)	1607504	5.00000	4.7
49 4-Ch	nlorotoluene	91	16.010	16.013	(1.917)	1581688	5.00000	4.7
50 tert	:-Butylbenzene	119	16.539	16.541	(1.980)	1782944	5.00000	4.7
51 1,2,	4-Trimethylbenzene	105	16.627	16.630	(1.991)	1543505	5.00000	4.8
52 sec-	-Butylbenzene	105	16.950	16.938	(2.029)	2271272	5.00000	4.7
53 m-Di	ichlorobenzene	146	17.185	17.173	(2.058)	825887	5.00000	4.5
54 4-Is	sopropyltoluene	119	17.200	17.202	(2.059)	1995935	5.00000	4.7
55 p-Di	ichlorobenzene	1.46	17.347	17.335	(2.077)	803561	5.00000	4.6
- 56 n ∘Bu	utylbenzene	91	18.008	18.010	(2.156)	1809491	5.00000	4.7
	-Dichlorobenzene-d4 (SUR)	152	18.037	18.040	(2.160)	439802	5.00000	4.7
•	ichlorobenzene	146	18.081	18.084	(2.165)	629582	5.00000	4.5
59 1,2	Dibromo-3-Chloropropane	75	19.637	19.640	(2.351)	4 37209	5.00000	4.3
60 1,2,	4-Trichlorobenzene	180	21.369	21.372	(2.558)	428451	5.00000	4.4
61 Hexa	achlorobutadiene	225	21.722	21.725	(2.601)	383062	5.00000	4 - 6
62 Naph	nthalene	128	21.928	21.931	(2.625)	396459	5.00000	4.3

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d Report Date: 20-Mar-2006 13:30

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	W. 17	FF====================================	=======		# = = = = =
63 1,2,3-Trichlorobenzene	180	22.501	22.489 (2.694)	311733	5.00000	4.4
M 38 Xylene (Total)	100			2249405	15.0000	14

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40855.d

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40856.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40856.d

Lab Smp Id: ESTD020

Inj Date : 17-MAR-2006 10:25

Inst ID: VOAMS5.i

Operator : VOAMS 5 Smp Info : ESTD020

Misc Info :

Comment

Method: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m

Meth Date: 20-Mar-2006 13:30 lily Quant Type: ISTD

Cal Date: 17-MAR-2006 10:25 Cal File: e40856.d

Als bottle: 5 Calibration Sample,

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: al

Calibration Sample, Level: 4

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

						AMOUN	T\$
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	=======================================	====	==			======	======
1	Dichlorodifluoromethane	85	2.925	2.910 (0.351)	2354037	20.0000	23
3	Chloromethane	50	3.203	3.175 (0.384)	1510040	20.0000	22
4	Vinyl Chloride	62	3-423	3.395 (0.411)	1652526	20.0000	22
5	Bromomethane	94	3.922	3.880 (0.470)	1502590	20.0000	22
6	Chloroethane	64	4.054	4.026 (0.486)	1022217	20.0000	21
7	Trichlorofluoromethane	101	4.480	4.467 (0.537)	3215240	20.0000	22
8	1,1-Dichloroethene	61	5.125	5.112 (0.615)	2382371	20.0000	22
111	Freon TF	101	5.169	5.156 (0.620)	3047986	20.0000	22
9	Methylene Chloride	84	5.712	5.699 (0.685)	1137319	20.0000	22
110	MTBE	73	6.035	6.022 (0.724)	1795756	20.0000	22
10	trans-1,2-Dichloroethene	96	6.050	6.036 (0.725)	1678725	20.0000	22
11	1,1-Dichloroethane	63	6.505	6.491 (0.780)	3041421	20.0000	22
12	cis 1,2-Dichloroethene	96	7.135	7.122 (0.856)	1610381	20.0000	22
13	2,2-Dichloropropane	77	7.150	7.136 (0.857)	2595882	20.0000	22
14	Bromochloromethane	128	7.385	7.371 (0.886)	657452	20.0000	22
15	Chloroform	83	7.443	7.430 (0.893)	2897848	20.0000	22

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40856.d Report Date: 20-Mar-2006 13:30

						AMQUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Cc	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
===	=======================================		==				
	16 1,1,1-Trichloroethane	97	7.678	7.664 (0.921)	2820876	20.0000	22
	17 1,1-Dichloropropene	75	7.840	7.826 (0.940)	2506809	20.0000	22
	18 Carbon Tetrachloride	117	7.869	7.855 (0.944)	2688449	20.0000	22
	20 1,2-Dichloroethane	62	8.060	8.046 (0.967)	1090038	20.0000	23
	19 Benzene	78	8.060	8.046 (0.967)	4539463	20.0000	22
*	2 Fluorobenzene	96	8.339	8.325 (1.000)	1159090	5.00000	(T)
	21 Trichloroethene	95	8.750	8.736 (1.049)	2070316	20.0000	22
	22 1,2-Dichloropropane	63	9.014	9.000 (1.081)	1614906	20.0000	22
	23 Dibromomethane	93	9.161	9.147 (1.099)	758705	20.0000	23
	24 Bromodichloromethane	83	9.308	9.293 (1.116)	2311025	20.0000	23
	25 cis-1,3-Dichloropropene	75	9.865	9.865 (1.183)	2065875	20.0000	23
	26 Toluene	92	10.364	10.350 (1.243)	3421115	20.0000	22
	27 trans-1,3-Dichloropropene	75	10.614	10.599 (1.273)	1368739	20.0000	24
	28 1,1,2-Trichloroethane	83	10.907	10.907 (1.308)	704409	20.0000	23
	30 1,3-Dichloropropane	76	11.201	11.200 (1.343)	1399358	20.0000	22
	29 Tetrachloroethene	166	11.230	11.230 (1.347)	2586078	20.0000	22
	31 Dibromochloromethane	129	11.627	11.611 (1.394)	1549282	20.0000	23
	32 1,2-Dibromoethane	107	11.891	11.875 (1.426)	1105544	20.0000	22
	33 Chlorobenzene	112	12.844	12.843 (1.540)	4104769	20.0000	22
	34 1,1,1,2-Tetrachloroethane	131	12.991	12.975 (1.558)	1820794	20.0000	22
	35 Ethylbenzene	91	13.035	13.048 (1.563)	7306138	20.0000	22
	36 m+p-Xylene	106	13.300	13.298 (1.595)	5717102	40.0000	44
	37 o-Xylene	106	14.224	14.207 (1.706)	2561714	20.0000	22
	39 Styrene	104	14.239	14.236 (1.707)	3902407	20.0000	23
	40 Bromoform	173	14.620	14.618 (1.753)	752046	20.0000	24
	41 Isopropylbenzene	105	14.928	14.926 (1.790)	7846420	20.0000	22
\$	42 4-Bromofluorobenzene (SUR)	95	15.222	15.219 (1.825)	708974	5.00000	5.7
	43 1,1,2,2-Tetrachloroethane	83	15.413	15.410 (1.848)	946161	20.0000	23
	45 1,2,3-Trichloropropane	110	15.531	15.513 (1.862)	236389	20.0000	22
	44 Bromobenzene	156	15.516	15.528 (1.861)	1687958	20.0000	22
	46 n-Propylbenzene	91	15.663	15.660 (1.878)	9053323	20.0000	22
	47 2-Chlorotoluene	91	15.840	15.836 (1.899)	5260552	20.0000	22
	48 1,3,5-Trimethylbenzene	105	15.957	15.954 (1.914)	5910690	20.0000	22
	49 4 Chlorotoluene	91	16.016	16.013 (1.921)	5899409	20.0000	22
	50 tert-Butylbenzene	119	16.545	16.541 (1.984)	6491966	20.0000	22
	51 1,2,4-Trimethylbenzene	105	16.619	16.630 (1.993)	5657661	20.0000	22
	52 sec-Butylbenzene	105	16.942	16.938 (2.032)	8356067	20.0000	22
	53 m-Dichlorobenzene	146	17.178	17.173 (2.060)	3178010	20.0000	. 22
	54 4-Isopropyltoluene	119	17.207	17.202 (2.063)	7286534	20.0000	22
	55 p-Dichlorobenzene	146	17.340	17.335 (2.079)	3061535	20.0000	22
	56 n-Butylbenzene	91	18.001	18.010 (2.159)	6593455	20.0000	22
\$	57 1,2 Dichlorobenzene-d4 (SUR)	152	18.045	18.040 (2.164)	424725	5.00000	5.7
	58 o-Dichlorobenzene	146	18.074	18.084 (2.167)	2424393	20.0000	22
	59 1,2-Dibromo∮3-Chloropropane	75	19.631	19.640 (2.354)	148977	20.0000	22
	60 1,2,4-Trichlorobenzene	180	21.348	21.372 (2.560)	1766650	20.0000	23
	61 Hexachlorobutadiene	225	21.716	21.725 (2.604)	1426331	20.0000	22
	62 Naphthalene	128	21.923	21.931 (2.629)	1649043	20.0000	23

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40856.d Report Date: 20-Mar-2006 13:30

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	****	==				======
63 1,2,3-Trichlorobenzene	180	22.481	22.489 (2.696)	1268845	20.0000	23
M 38 Xylene (Total)	100			8278816	60.0000	66

QC Flag Legend

T - Target compound detected outside RT window.

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40857.d

Report Date: 20-Mar-2006 13:30

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40857.d

Lab Smp Id: ESTD040

Inj Date : 17-MAR-2006 10:55

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : ESTD040

Misc Info :

Comment

Method : /chem/VOAMS5.i/524/03-17-06/17mar06.b/524 2 05.m Meth Date : 20-Mar-2006 13:30 lily Quant Type: ISTD Cal Date : 17-MAR-2006 10:55 Cal File: e40857.d

Als bottle: 6 Calibration Sample, Level: 5

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

						AMOUN	rrs
		QUANT SIG		,		CAL-AMT	ON~COL
Compo	punds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	#=####################################	====	==	======================================	. ========		======
1	Dichlorodifluoromethane	85	2.925	2.910 (Ö.351)	4285054	40.0000	38
3	Chloromethane	50	3.218	3.175 (0.386)	2961037	40-0000	39
4	Vinyl Chloride	62	.3.424	3.395 (0.410)	3217982	40.0000	39
5	Bromomethane	94	3.923	3.880 (0.470)	2933983	40.0000	3.8.
6	Chloroethane	64	4.055	4.026 (0.486)	2005700	40.0000	38
7	Trichlorofluoromethane	101	4.495	4.467 (0.539)	5938206	40.0000	37
8	1,1-Dichlorocthene	61	5.126	5.112 (0.615)	4581690	40.0000	39
111	Freon TF	101	5.170	5.156 (0.620)	5682052	40.0000	38
9	Methylene Chloride	. 84	5.713	5.699 (0.685)	2261351	40.0000	39
110	MTBE	73	6.036	6.022 (0.724)	3623799	40.0000	40
10	trans-1,2-Dichloroethene	(96	6.050	6.036 (0.725)	3299600	40.0000	39
11	1,1-Dichloroethane	63	6.505	6.491 (0.780)	6002058	40.0000	39
12	cis-1,2-Dichloroethene	96	7.136	7.122 (0.856)	3193577	40.0000	39
13	2,2-Dichloropropane	77	7.151	7.136 (0.857)	4999717	40.0000	38
14	Bromochloromethane	128	7.385	7.371 (0.886)	1330794	40.0000	41(A)
15	Chloroform	83	7.444	7.430 (0.893)	5701887	40.0000	39

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40857.d Report Date: 20-Mar-2006 13:30

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
2=c7===================================	== - = =	==		======	======	======
16 1,1,1-Trichloroethane	97	7.679	7.664 (0.921)	5498084	40.0000	39
17 1,1-Dichloropropene	75	7.841	7.826 (0.940)	4898698	40.0000	39
18 Carbon Tetrachloride	117	7.870	7.855 (0.944)	5160172	40.0000	39
20 1,2-Dichloroethane	62	8.061	8.046 (0.967)	2121219	40.0000	41(A)
19 Benzene	78	8.061	8.046 (0.967)	8939014	40.0000	39
* 2 Fluorobenzene	96	8.340	8.325 (1.000)	1289968	5.00000	(T)
21 Trichloroethene	95	8.751	8.736 (1.049)	4023076	40.0000	39
22 1,2-Dichloropropane	63	9.015	9.000 (1.081)	3179859	40.0000	40
23 Dibromomethane	93	9.162	9.147 (1.099)	1482566	40.0000	40
24 Bromodichloromethane	83	9.309	9.293 (1.116)	4567063	40.0000	41(A)
25 cis-1,3-Dichloropropene	75	9.867	9.865 (1.183)	4129963	40.0000	42 (A)
26 Toluene	92	10.369	10.350 (1.243)	6849066	40.0000	40
27 trans-1,3-Dichloropropene	75	10.605	10.599 (1.272)	2798352	40.0000	44 (A)
28 1,1,2-Trichloroethane	83	10.915	10.907 (1.309)	1382539	40.0000	41(A)
30 1,3-Dichloropropane	76	11.209	11.200 (1.344)	2812417	40.0000	40(A)
29 Tetrachloroethene	166	11.239	11.230 (1.348)	5201767	40.0000	40(A)
31 Dibromochloromethane	129	11.624	11.611 (1.394)	3076954	40.0000	42 (A)
32 1,2-Dibromoethane	107	11.891	11.875 (1.426)	2213421	40.0000	40(A)
33 Chlorobenzene	112	12.849	12.843 (1.541)	8258555	40.0000	40(A)
34 1,1,1,2-Tetrachloroethane	131	12.982	12.975 (1.557)	3661049	40.0000	40
35 Ethylbenzene	91	13.042	13.048 (1.564)	14236407	40.0000	39
36 m+p Xylene	106	13.309	13.298 (1.596)	11442454	80.0000	79
37 o-Xylene	106	14.224	14.207 (1.706)	5087727	40.0000	39
39 Styrene	104	14.239	14.236 (1.707)	7883294	40.0000	41(A)
40 Bromoform	173	14.624	14.618 (1.753)	1556099	40.0000	44 (A)
41 Isopropylbenzene	105	14.934	14.926 (1.791)	15328292	40.0000	38
S 42 4-Bromofluorobenzene (SUR)	95	15.228	15.219 (1.826)	677104	5.00000	4.9
43 1,1,2,2-Tetrachlorosthane	83	15.419	15.410 (1.849)	1865704	40.0000	40(A)
45 1,2,3-Trichloropropane	110	15.522	15.513 (1.861)	465669	40.0000	39
44 Bromobenzene	156	15.522	15.528 (1.861)	3411822	40.0000	41(A)
46 n Propylbenzene	91	15.670	15.660 (1.879)	17555939	40.0000	38
47 2-Chlorotoluene	91	15.831	15.836 (1.898)	10256708	40.0000	. 38
48 1,3,5-Trimethylbenzene	105	15.964	15.954 (1.914)	11459317	40.0000	38
49 4-Chlorotoluene	91	16.008	16.013 (1.919)	11248939	40.0000	38
50 tert-Butylbenzene	119	16.537	16.541 (1.983)	12794759	40.0000	38
51 1,2,4-Trimethylbenzene	105	16.626	16.630 (1.993)	11093837	40.0000	39
52 sec-Butylbenzene	105	16.949	16.938 (2.032)	16133884	40.0000	38
53 m-Dichlorobenzene	146	17.170	17.173 (2.059)	6396649	40.0000	40(A)
54 4-Isopropyltoluene	119	17.199	17.202 (2.062)	14073762	40.0000	38
55 p-Dichlorobenzene	146	17.332		6026367	40.0000	39
56 n-Butylbenzene	91		18.010 (2.159)	12608660	40.0000	37
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.037		408396	5.00000	5.0
58 o-Dichlorobenzene	146	18.081	18.084 (2.168)	4837556	40.0000	40
59 1,2-Dibromo-3-Chloropropane	75		19.640 (2.353)	311107	40.0000	41 (A)
60 1,2,4-Trichlorobenzene	180		21.372 (2.561)	3685315	40.0000	43 (A)
61 Hexachlorobutadiene	225	21.336		2941790	40.0000	40 (A)
					40.0000	40 (A)
62 Naphthalene	128	∠1.916	21.931 (2.628)	3331923	*0.0000	# 4 (A)

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40857.d Report Date: 20-Mar-2006 13:30

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)	
=======================================	====	==				======	
63 1,2,3-Trichlorobenzene	180	22.490	22.489 (2.697)	2613572	40.0000	42 (A)	
M 38 Xylene (Total)	100			16530181	120.000	120	

QC Flag Legend

T - Target compound detected outside RT window.A - Target compound detected but, quantitated amount exceeded maximum amount.

STL Edison

Data File: /chem/WDAMS5.i/524/03-17-06/17mar06.b/e40857.d

VOLATILE ORGANICS INITIAL CALIBRATION DATA METHOD 524.2

Instrument ID: VOAMS5 Calibration Date(s): 03/07/06 03/07/06

Heated Purge: (Y/N) N Calibration Time(s): 1302 1517

LAB FILE ID: RRF5: E40	746 F	RF20: E40	742 RI	RF40: E40745
COMPOUND	RRF5	RRF20	RRF40	
	======	=======	=======	
Acetone	0.008	0.010	0.008	
2-Butanone	0.025	0.024		
1-Methyl-2-pentanone	0.055	0.071		1
2-Hexanone	0.043	0.040		
Carbon Disulfide	0.874	0.832		i
Diethyl Ether	0.116	0.113		
Iodomethane	0.705	0.682	0.635	
Allyl Chloride	0.185	0.190	0.182	
Acrylonitrile	0.012	0.012	0.011	
Propionitrile	0.004	0.004	0.004	
Methyl Acrylate	0.068	0.073	0.071	
Methacrylonitrile	0.020	0.019	0.020	
Tetrahydrofuran	0.004	0.005	0.005	
L-Chlorobutane	0.810	0.772	0.744	
Methyl Methacrylate	0.050	0.065	0.066	
2-Nitropropane	0.020	0.020	0.018	
Chloroacetonitrile	0.002	0.001	0.001	
1,1-Dichloropropanone	0.048	0.054	0.047	
Ethyl Methacrylate	0.111	0.133	0.135	i ·
rans-1,4-Dichloro-2-butene	0.024	0.027	0.027	
Pentachloroethane -	0.238	0.229	0.222	
Hexachloroethane	0.541	0.531	0.517	
Vitrobenzene	0.001	0.001	0.001	
	_=======	========	========	
-Bromofluorobenzene (SUR)	0.575	0.584	0.574	İ
$1,2$ -Dichlorobenzene-d4 (SU \overline{R})	0.346	0.344	0.333	

VOLATILE ORGANICS INITIAL CALIBRATION DATA (cont'd) METHOD 524.2

Calibration Date(s): 03/07/06 03/07/06 Instrument ID: VOAMS5

Heated Purge: (Y/N) N Calibration Time(s): 1302 1517

		COEFFICENT	%RSD
COMPOUND	CURVE	A1	OR R^2
	=====	=======	=======
Acetone	AVRG	0.00887719	9.4*
2-Butanone	AVRG	0.02418178	4.8*
4-Methyl-2-pentanone	AVRG	0.06444072	13.2*
2-Hexanone	AVRG	0.04104165	3.7*
Carbon Disulfide	AVRG	0.83856296	3.8*
Diethyl Ether	AVRG	0.11034491	6.7*
Iodomethane	AVRG	0.67399729	5.2*
Allyl Chloride	AVRG	0.18571462	2.2*
Acrylonitrile	AVRG	0.01177280	3.1*
Propionitrile	AVRG	0.00423786	2.3*
Methyl Acrylate	AVRG	0.07063314	4.0*
Methacrylonitrile	AVRG	0.01946676	2.0*
Tetrahydrofuran	AVRG	0.00477792	15.9*
1-Chlorobutane	AVRG	0.77567292	4.2*
Methyl Methacrylate	AVRG	0.06041958	15.0*
2-Nitropropane	AVRG	0.01922285	3.0*
Chloroacetonitrile	AVRG	0.00126927	17.9*
1,1-Dichloropropanone	AVRG	0.04990178	7.5*
Ethyl Methacrylate	AVRG	0.12645205	10.5*
trans-1,4-Dichloro-2-butene	AVRG	0.02592686	7.7*
Pentachloroethane -	AVRG	0.22955947	3.6*
Hexachloroethane	AVRG	0.52970714	2.2*
Nitrobenzene	AVRG	0.00119679	16.1*
=======================================	=====	========	=======
4-Bromofluorobenzene (SUR)	AVRG	0.57795906	1.0*
1,2-Dichlorobenzene-d4 (SUR)	AVRG	0.34126986	2.0*
	. ———		·

^{*} Compound with required maximum % RSD value.
** Compound with required minimum RRF value.

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40746.d Report Date: 20-Mar-2006 13:32

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40746.d

Lab Smp Id: ESTD005-R4

Inj Date : 07-MAR-2006 15:17 Operator : VOAMS 5 Smp Info : ESTD005-R4 Inst ID: VOAMS5.i

Misc Info :

Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:32 lily Quant Type: ISTD

Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d

Als bottle: 11 Calibration Sample, Level: 3

Dil Factor: 1.00000

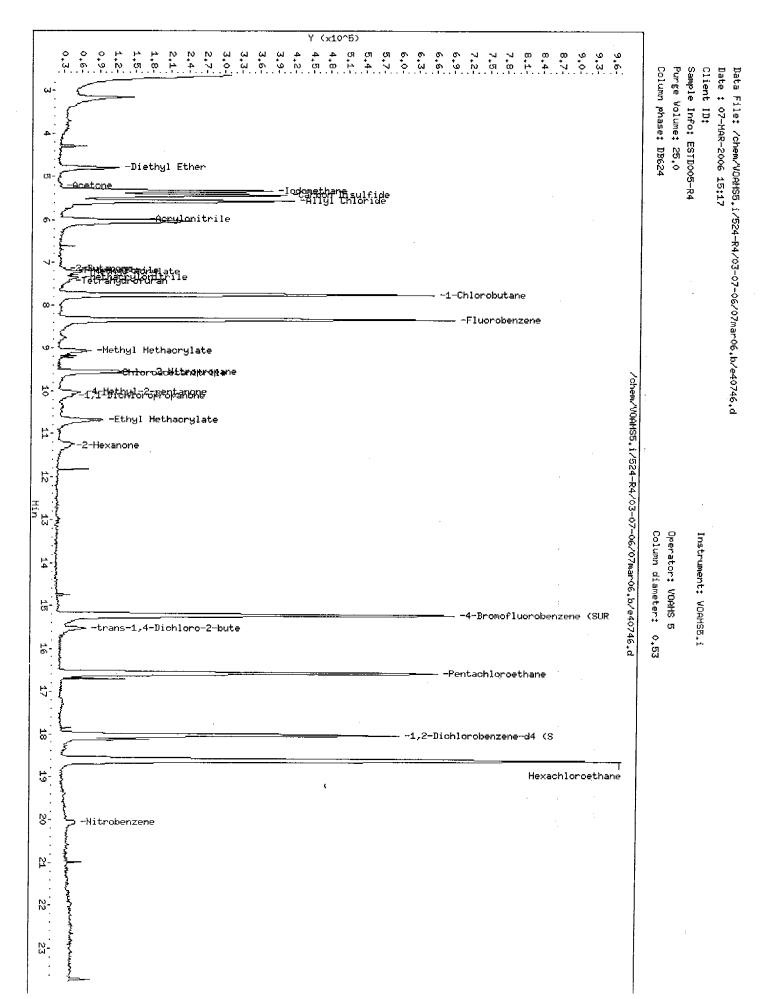
Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable Local Compound Variable


					NUOMA	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==			======	
125 Diethyl Ether	59	4.796	4.801 (0.576)	146299	5.00000	5.3
113 Acetone	43	5.211	5.181 (0.625)	10569	5.00000	4.7
126 Iodomethane	142	5.329	5.328 (0.639)	887584	5.00000	5.2
120 Carbon Disulfide	76	5.418	5.431 (0.650)	1100330	5-00000	5.2
127 Allyl Chloride	76	5.564	5.563 (0.668)	232862	5.00000	5 - 0
128 Acrylonitrile	52	5.990	5.973 (0. 7 19)	152787	50.0000	52
114 2-Butanone	43	7.147	7.131 (0.858)	32094	5.00000	5.3
129 Propionitrile	54	7.191	7.175 (0.863)	51936	50.0000	49
130 Methyl Acrylate	55	7.220	7.219 (0.866)	. 85155	5.00000	4.8
131 Methacrylonitrile	67	7.352	7.336 (0.882)	24737	5.00000	5.0
132 Tetrahydrofuran	71	7.440	7.439 (0.893)	4948	5.00000	4.1
133 1-Chlorobutane	56	7.748	7.747 (0.930)	1020498	5.00000	5.2
* 2 Fluorobenzene	96	8.334	8.333 (1.000)	1259607	5.00000	
134 Methyl Methacrylate	69	9.052	9.052 (1.086)	62955	5.00000	4.1
136 Chloroacetonitrile	48	9.580	9.535 (1.149)	19271	50.0000	60
135 2-Nitropropane	43	9.551	9.550 (1.146)	247029	50.0000	51

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40746.d Report Date: 20-Mar-2006 13:32

					AMOUN	rs
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==			****	=====
115 4-Methyl-2-pentanone	43	10.020	10.019 (1.202)	69000	5.00000	4.2
137 1,1-Dichloropropanone	43	10.122	10.107 (1.215)	60458	5.00000	4.8
138 Ethyl Methacrylate	69	10.679	10.664 (1.281)	140079	5.00000	4.4
119 2-Hexanone	43	11.295	11.265 (1.355)	53,829	5.00000	5.2(M)
\$ 42 4-Bromofluorobenzene (SUR)	95	15.221	15.221 (1.826)	724300	5.00000	5.0
139 trans-1,4-Dichloro-2-butene	53	15.529	15.529 (1.863)	29826	5.00000	4.6
140 Pentachloroethane	167	16.570	16.570 (1.988)	299722	5.00000	5.2
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.022	18.023 (2.162)	436212	5.00000	5.1
141 Hexachloroethane	117	18.609	18.610 (2.233)	681475	5.00000	5.1
142 Nitrobenzene	51	20.047	20.033 (2.405)	17685	50,0000	59

QC Flag Legend

M - Compound response manually integrated.

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40742.d Report Date: 20-Mar-2006 13:32

STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40742.d

Lab Smp Id: ESTD020-R4

Inj Date : 07-MAR-2006 13:02 Operator : VOAMS 5 Smp Info : ESTD020-R4 Inst ID: VOAMS5.i

Misc Info : Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:32 lily Quant Type: ISTD

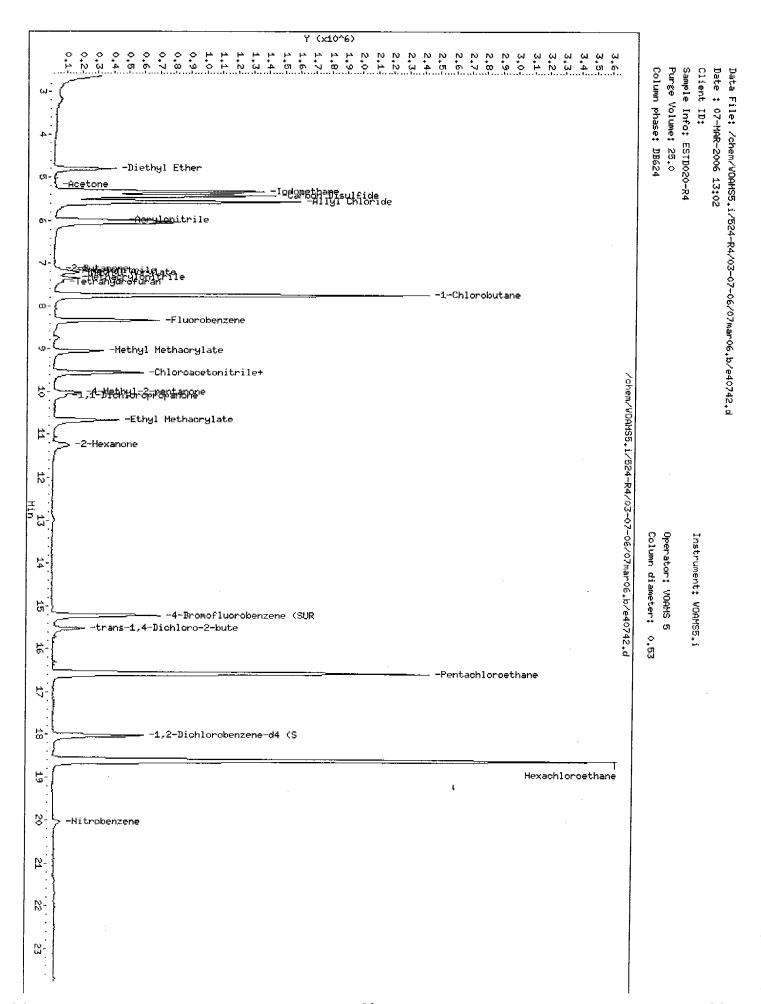
Cal Date : 07-MAR-2006 13:02 Cal File: e40742.d

Als bottle: 7 Calibration Sample, Level: 4

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable


Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable Local Compound Variable

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	ŔТ	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	====	==	======================================		<b>=====</b>	======
125 Diethyl Ether	59	4.801	4.801 (0.576)	559112	20.0000	20
113 Acetone	43	5.181	5 181 (0.622)	48732	20.0000	22
126 Iodomethane	142	5.328	5.328 (0.639)	3377615	20.0000	20
120 Carbon Disulfide	76	5.431	5.431 (0.652)	4121870	20.0000	20
127 Allyl Chloride	76	5.563	5.563 (0.668)	941992	20.0000	2.0
128 Acrylonitrile	52	5.973	5.973 (0.717)	583420	200.000	200
114 2-Butanone	43	7.131	7.131 (0.856)	117891	20.0000	20
129 Propionitrile	54	7.175	7.175 (0.861)	212910	200.000	200
130 Methyl Acrylate	55	7.219	7.219 (0.866)	362377	20.0000	21
131 Methacrylonitrile	67	7.336	7.336 (0.880)	94171	20.0000	20
132 Tetrahydrofuran	71	7.439	7.439 (0.893)	26731	20.0000	€ 22
133 1-Chlorobutane	56	7.747	7.747 (0.930)	3825969	20.0000	20
* 2 Fluorobenzene	96	8.333	8.333 (1.000)	1238145	5.00000	
134 Methyl Methacrylate	69	9.052	9.052 (1.086)	324326	20.0000	22
136 Chloroacetonitrile	48	9.535	9.535 (1.144)	57776	200.000	180
135 2-Nitropropane	43	9.550	9.550 (1.146)	965972	200.000	200

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40742.d Report Date: 20-Mar-2006 13:32

					AMOUN	T\$
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
	a===	==	=========	=======		
115 4 Methyl-2-pentanone	43	10.019	10.019 (1.202)	350891	20.0000	22
137 1,1-Dichloropropanone	43	10.107	10.107 (1.213)	268628	20.0000	22
138 Ethyl Methacrylate	69	10.664	10.664 (1.280)	657049	20.0000	21
119 2-Hexanone	43	11.265	11.265 (1.352)	196754	20.0000	19
\$ 42 4-Bromofluorobenzene (SUR)	95	15.221	15.221 (1.826)	723519	5.00000	5.0
139 trans-1,4-Dichloro-2-butene	53	15.529	15.529 (1.863)	136028	20.0000	21
140 Pentachloroethane	167	16.570	16-570 (1.988)	1135177	20.0000	20
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.023	18.023 (2.163)	425960	5.00000	5.0
141 Hexachloroethane	117	18.610	18 610 (2.233)	2628878	20.0000	20
142 Nitrobenzene	51	20.033	20.033 (2.404)	57568	200.000	190



Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40745.d

Report Date: 20-Mar-2006 13:32

#### STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40745.d

Lab Smp Id: ESTD040-R4

Inj Date : 07-MAR-2006 14:47

Operator : VOAMS 5 Smp Info : ESTD040-R4 Inst ID: VOAMS5.i

Misc Info :

Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:32 lily Quant Type: ISTD Quant Type: ISTD

Cal Date : 07-MAR-2006 14:47 Cal File: e40745.d

Als bottle: 10 Dil Factor: 1.00000 Calibration Sample, Level: 5

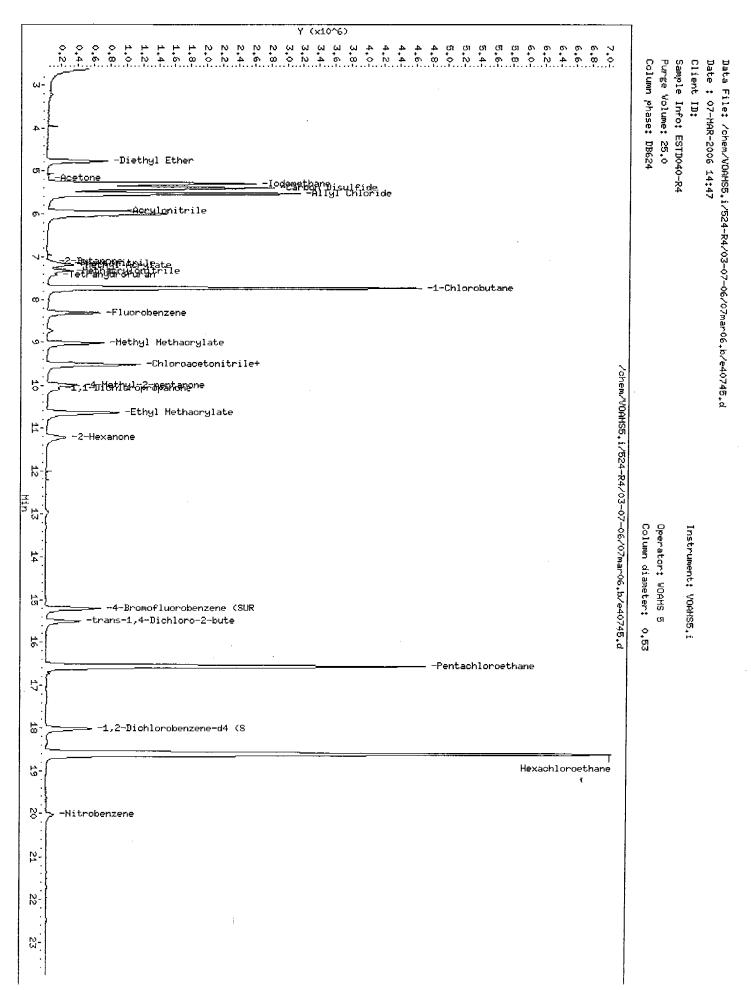
Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable


					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
_x====================================	====	==	======		======	=======
125 Diethyl Ether	59	4.772	4.801 (0.574)	1030995	40.0000	37
113 Acetone	43	5.168	5.181 (0.621)	84921	40.0000	38
126 Iodomethane	142	5.300	5.328 (0.637)	6422289	40.0000	38
120 Carbon Disulfide	76	5.403	5.431 (0.649)	8186407	40.0000	39
127 Allyl Chloride	76	5.535	5.563 (0.665)	1840443	40.0000	39
128 Acrylonitrile	52	5.945	5.973 (0.715)	1153207	400.000	390
114 2-Butanone	43	7.103	7.131 (0.854)	235139	40.0000	38
129 Propionitrile	54	7.162	7.175 (0.861)	433789	400.000	400(A)
130 Methyl Acrylate	55	7.191	7.219 (0.864)	718958	40.0000	40(A)
131 Methacrylonitrile	67	7.323	7.336 (0.880)	199609	40.0000	40(A)
132 Tetrahydrofuran	71	7.411	7.439 (0.891)	50624	40.0000	42 (A)
133 1-Chlorobutane	56	7.734	7.747 (0.929)	7523862	40.0000	38
* 2 Fluorobenzene	96	8.320	8.333 (1.000)	1263535	5.00000	
134 Methyl Methacrylate	69	9.024	9.052 (1.085)	665050	40.0000	44(A)
136 Chloroacetonitrile	48	9.508	9.535 (1.143)	112334	400.000	350
135 2-Nitropropane	43	9.523	9.550 (1.145)	1875343	400.000	390

Data File: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b/e40745.d Report Date: 20-Mar-2006 13:32

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	( ug/L)
*********	====	2=	=======================================		======	EEE.
115 4-Methyl-2-pentanone	43	9.992	10.019 (1.201)	684260	40.0000	42 (A)
137 1,1-Dichloropropanone	43	10.080	10.107 (1.212)	479818	40.0000	38
138 Ethyl Methacrylate	69	10.638	10.664 (1.278)	1369466	40.0000	43 (A)
119 2-Hexanone	43,	11.239	11.265 (1.351)	411029	40.0000	40
\$ 42 4-Bromofluorobenzene (SUR)	95	15.210	15.221 (1.828)	725900	5.00000	5.0
139 trans-1,4-Dichloro-2-butene	53	15.504	15.529 (1.863)	269241	40.0000	41(A)
140 Pentachloroethane	167	16.560	16.570 (1.990)	2239190	40.0000	38
\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.013	18.023 (2.165)	421352	5.00000	4 - 9
141 Hexachloroethane	117	18.601	18.610 (2.236)	5228909	40.0000	39
142 Nitrobenzene	51	20.024	20,033 (2,407)	103505	400.000	340

### QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.



## VOLATILE ORGANICS CONTINUING CALIBRATION CHECK METHOD 524.2

Instrument ID: VOAMS5 Calibration Date: 03/17/06 Time: 1130

Heated Purge: (Y/N) N Init. Calib. Times: 1302 1517

COMPOUND	RRF	RRF20	MIN RRF	%D	MAX %D
=======================================	=======	=======	=======	=====	====
Acetone	0.009	0.010		-11.1	
2-Butanone	0.024			-16.7	
4-Methyl-2-pentanone	0.065			-13.8	
2-Hexanone	0.041		ľ	-9.8	30.0
Carbon Disulfide	0.839			11.6	
Diethyl Ether	0.110	0.110			30.0
Iodomethane	0.674				30.0
Allyl Chloride	0.186				30.0
Acrylonitrile	0.012	0.013		-8.3	30.0
Propionitrile	0.004	0.005		-25.0	
Methyl Acrylate	0.071	0.078		-9.8	30.0
Methacrylonitrile	0.020	0.021		-5.0	30.0
Tetrahydrofuran	0.005	0.005		0.0	30.0
1-Chlorobutane	0.775	0.666		14.1	40.0
Methyl Methacrylate	0.060	0.078		-30.0	30.0
2-Nitropropane	0.019	0.021		-10.5	30.0
Chloroacetonitrile	0.001	0.002		-100.0	30.0
1,1-Dichloropropanone	0.050	0.062		-24.0	30.0
Ethyl Methacrylate	0.126	0.157		-24.6	30.0
trans-1,4-Dichloro-2-butene	0.026	0.030		-15.4	30.0
Pentachloroethane —	0.230	0.235		-2.2	30.0
Hexachloroethane	0.530	0.486		8.3	30.0
Nitrobenzene	0.001	0.002		-100.0	30.0
	=======	=======	=======	=====	1 1
4-Bromofluorobenzene (SUR)	0.578	0.519		10.2	30.0
1,2-Dichlorobenzene-d4 (SUR)	0.341	0.319		6.4	30.0
					I

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40858.d

Report Date: 20-Mar-2006 13:34

#### STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40858.d

Lab Smp Id: ESTD076-R4

Inj Date : 17-MAR-2006 11:30 Operator : VOAMS 5 Smp Info : ESTD076-R4 Inst ID: VOAMS5.i

Misc Info : Comment

Method : /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4 04.m

Meth Date : 20-Mar-2006 13:34 lily Quant Type: ISTD

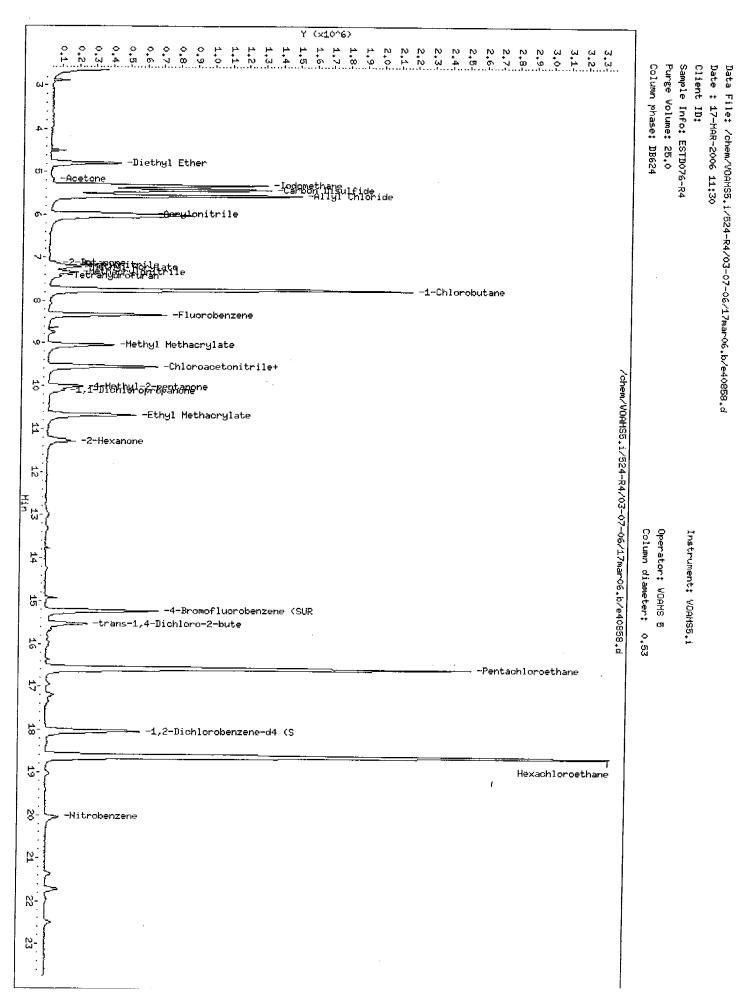
Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d

Als bottle: 7 Continuing Calibration Sample

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable


Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cond Variable

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)	
=======================================	3375	==	=======================================				
125 Diethyl Ether	59	4.787	4.787 (0.574)	564195	20-0000	20	
113 Acetone	43	5.168	5.168 (0.620)	50046	20.0000	22	
126 Iodomethane	142	5.315	5.315 (0.638)	3184041	20.0000	18	
120 Carbon Disulfide	76	5.418	5.418 (0.650)	3796479	20.0000	18	
127 Allyl Chloride	76	5.550	5.550 (0.666)	887525	20.0000	19	
128 Acrylonitrile	52	5.975	5.975 (0.717)	655447	200.000	220	
114 2-Butanone	43	7.119	7.119 (0.854)	145859	20.0000	24	
129 Propionitrile	54	7.177	7.177 (0.861)	246006	200.000	230	
130 Methyl Acrylate	55	7.207	7.207 (0.865)	398980	20.0000	22	
131 Methacrylonitrile	67	7.339	7.339 (0.880)	109105	20.0000	22	
132 Tetrahydrofuran	71	7.441	7.441 (0.893)	26626	20.0000	22	4
133 1-Chlorobutane	56	7.749	7.749 (0.930)	3408415	20.0000	17	
* 2 Fluorobenzene	96	8.336	8.336 (1.000)	1279227	5.00000		
134 Methyl Methacrylate	69	9.054	9.054 (1.086)	398986	20.0000	26	
136 Chloroacetonitrile	48	9.538	9.538 (1.144)	81338	200.000	250	
135 2-Nitropropane	43	9.553	9-553 (1.146)	1091654	200.000	220	

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40858.d Report Date: 20-Mar-2006 13:34

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
C	Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
-	=======================================	====	<b>E S</b>				
	115 4-Methyl-2-pentanone	43	10.007	10.007 (1.201)	379174	20.0000	23
	137 1,1-Dichloropropanone	43	10.110	10.110 (1.213)	316748	20.0000	25
	138 Ethyl Methacrylate	69	10.667	10.667 (1.280)	805149	20.0000	25
	119 2-Hexanone	43	11.269	11.269 (1.352)	231493	20.0000	22
Ş	\$ 42 4-Bromofluorobenzene (SUR)	95	15.226	15.226 (1.827)	663972	5.00000	4.5
	139 trans-1,4-Dichloro-2-butene	53	15.519	15.519 (1.862)	152225	20.0000	23
	140 Pentachloroethane	167	16.576	16.576 (1.989)	1203512	20.0000	20
ş	\$ 57 1,2-Dichlorobenzene-d4 (SUR)	152	18.044	18.044 (2.165)	408683	5.00000	4.7
	141 Hexachloroethane	117	18.617	18.617 (2.233)	2484499	20.0000	18
	142 Nitrobenzene	51	20.041	20.041 (2.404)	77125	200.000	250



Surrogate Compound Recovery Summary

## VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: 1425

		~ -				T
	LAB	S1	S2	S3	OTHER	TOT
	SAMPLE NO.	#	#	#		OUT
	=======================================	=====	=====	=====	=====	===
01	1425BS	97	96			0
02	1425BSD	114	114			
03	EV076	95	93			l ol
04						
05						
06					l	
07						
08				·	ļ ———	
09				<del></del>	ļ <i>-</i>	lI
10					ļ	li
11						
12				<u>-</u>		ll
13						ll
14						
15						
16						
17						
18						
19						
20						
21				-		<u> </u>
22						
23						
23			<del></del> .			
24						<u> </u>
25						
26			·			ll
27						
28						
29						
30						
,						·

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

## VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: 0524

	LAB	S1		L 03	OMILED	<del>Lmom</del> I
	SAMPLE NO.	51	S2 "	S3	OTHER	TOT
	SAMPLE NO.		#	#		OUT
01	EV076A	88	86	=====	=====	===
02	EV076A	95	93	<u> </u>		0
03	715155	95				0
04	715155	87	87	l ———		0
05	1,12122	8/	80			0
06						ļ <del></del>
07					<u> </u>	ll
08						
09			<del></del>			
10						
11						
12						
13						
14						
15						<del></del>
16		<u> </u>				
17			<del></del>		<del></del>	<b></b> -
18	<u> </u>					
19						
20						
21						
22			<del></del>			
23			<del></del>			
24						
25						
26						<u></u>
27		<del></del> -			<del></del>	<b></b>
28						
29	<del></del>					
30		·		<del></del>		<b></b> -1
241		ا ــــــــــــــــــــــــــــــــــــ				

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

# VOLATILE SYSTEM MONITORING COMPOUND RECOVERY METHOD 524.2

Matrix: WATER Level: DW Lab Job No: 1427

	LAB	S1	S2	S3	OTHER	I mom I
	SAMPLE NO.	1 #	54 #	53	OTHER	TOT
	DAMPER NO.		# ======	  ======		===
01	1427BS	88	85			0
02	1427BSD-R4	88	86	i ———		ő
03	EV076A	88	86		[ <del></del>	اة ا
04						
05			WW 1			
06						[ ]
07						
80						
09					<u> </u>	·
10 11		·				
$\frac{11}{12}$		·				
13		<del></del>				
14		· <del></del>			<del></del> -	
15						
16						
17						
18						<del></del>
19						
20						
21						I — I
22						
23						
24						<u> </u>
25						
26 27						
28						<u>—</u> I
29						
30						
J 0						

S1 = 4-Bromofluorobenzene (70-130) S2 = 1,2-Dichlorobenzene-d4 (70-130)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

page 1 of 1

Spike Recovery Summary

# VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER QA Batch: 1425

Level: DW

Dichlorodifluoromethane   2.0   95   120   23.3	Compound	SPIKE ADDED (ug/L)	BS % REC.	BSD % REC.	RPD
	Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene Chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 2,2-Dichloropropane Bromochloromethane Chloroform 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon Tetrachloride Benzene 1,2-Dichloroethane Trichloroethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane cis-1,3-Dichloropropene Toluene trans-1,3-Dichloropropen 1,1,2-Trichloroethane Tetrachloroethene 1,3-Dichloropropane Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethan Ethylbenzene Xylene (Total)	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	95 100 100 905 100 100 100 100 100 100 100 100 100 1	120 125 120 110 115 120 125 120 125 115 115 115 115 115 115 115 110 115 110 115 110 115 110 110	23.3 22.2 18.2 20.0 19.0 18.2 17.4 18.2 19.0 14.0 19.0 19.0 19.0 19.0 19.5 14.6 19.0 14.6 19.0 14.6 19.5 14.0 14.0 14.0 14.0 14.0 16.0 17.6 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0

^{*} Values outside of QC limits

# VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER QA Batch: 1425

Level: DW

	SPIKE ADDED	BS %	BSD %	
Compound	(ug/L)	REC.	REC.	, RPD
	=======	========	=======	=======
Bromoform	2.0	90	105	15.4
Isopropylbenzene	2.0	95	110	14.6
1,1,2,2-Tetrachloroethan	2.0	95	115	19.0
Bromobenzene	2.0	90	110	20.0
1,2,3-Trichloropropane	2.0	90	110	20.0
n-Propylbenzene	2.0	95	110	14.6
2-Chlorotoluene	2.0	95	115	19.0
1,3,5-Trimethylbenzene	2.0	95	115	19.0
4-Chlorotoluene	2.0	95	115	19.0
tert-Butylbenzene	2.0	95	115	19.0
1,2,4-Trimethylbenzene	2.0	100	115	14.0
sec-Butylbenzene	2.0	90	110	20.0
m-Dichlorobenzene	2.0	95	110	14.6
4-Isopropyltoluene	2.0	95	115	19.0
p-Dichlorobenzene	2.0	100	115	14.0
n-Butylbenzene	2.0	90	110	20.0
o-Dichlorobenzene	2.0	95	115	19.0
1,2-Dibromo-3-Chloroprop	2.0	85	105	21.1
1,2,4-Trichlorobenzene	2.0	90	100	10.5
Hexachlorobutadiene	2.0	95	110	14.6
Naphthalene	2.0	95	105	10.0
1,2,3-Trichlorobenzene	2.0	95	105	10.0
MTBE	2.0	90	110	20.0
<u> </u>				

^{*} Values outside of QC limits

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40860.d

Report Date: 17-Mar-2006 12:49

### STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40860.d Lab Smp Id: 1425BS

Inj Date : 17-MAR-2006 12:33

Operator : VOAMS 5 Inst ID: VOAMS5.i

Smp Info : 1425BS

Misc Info : Comment

Method: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m

Meth Date: 17-Mar-2006 12:21 lily Quant Type: ISTD

Cal Date: 17-MAR-2006 12:01 Cal File: e40859.d

Als bottle: 9 QC Sample: BS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 52

Compound Sublist: 524.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

Cpnd Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RТ	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
EEGRESS	. ==== .	==	=======================================			
1 Dichlorodifluoromethane	85	2.924	2,910 (0.350)	237392	1.94802	1.9
3 Chloromethane	50	3.188	3.175 (0.382)	165934	2.01014	2.0
4 Vinyl Chloride	62	3.394	3.395 (0.406)	174117	1.96344	2.0
5 Bromomethane	94 .	3.892	3.880 (0.466)	151083	1.82921	1.8
6 Chloroethane	64	4.054	4.026 (0.485)	111209	1.94653	1.9
7 Trichlorofluoromethane	101	4.479	4.467 (0.536)	335760	1.96354	2.0
8 1,1-Dichloroethene	61	5.124	5.112 (0.614)	266647	2.08589	2.1
9 Methylene Chloride	84	5.711	5.699 (0.684)	129907	2.05642	2.0
110 MTBE	73	6.048	6.022 (0.724)	181501	1.84465	1.8
10 trans-1,2-Dichloroethene	96	6.048	6.036 (0.724)	178593	1.95696	2.0
11 1,1-Dichloroethane	63	6.518	6.491 (0.780)	323675	1.94030	1.9
12 cis-1,2-Dichloroethene	96	7.133	7.122 (0.854)	172824	1.95186	2.0
13 2,2-Dichloropropane	77	7.148	7.136 (0.856)	272657	1.92527	1.9
14 Bromochloromethane	128	7.397	7.371 (0.886)	68994	1.96364	2.0
15 Chloroform	83	7.441	7.430 (0.891)	294856	1.88746	1.9
16 1,1,1-Trichloroethane	97	7.676	7.664 (0.919)	295277	1.92298	1.9

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40860.d Report Date: 17-Mar-2006 12:49

				•		CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
==		====	= =				***
	17 1,1-Dichloropropene	75	7.838	7.826 (0.938)	246055	1.81248	1.8
	18 Carbon Tetrachloride	117	7.867	7.855 (0.942)	280715	1.94976	1.9
	19 Benzene	78	8.072	8.046 (0.967)	491784	1.98609	2.0
	20 1,2-Dichloroethane	62	8.072	8.046 (0.967)	114179	2.02664	2.0
*	2 Fluorobenzene	96	8.351	8.325 (1.000)	1391125	5.00000	
	21 Trichloroethene	95	8.762	8.736 (1.049)	212310	1.91817	1.9
	22 1,2-Dichloropropane	63	9.026	9.000 (1.081)	170912	1.98319	2.0
	23 Dibromomethane	93	9.173	9.147 (1.098)	76477	1.90550	1.9
	24 Bromodichloromethane	83	9.319	9.293 (1.116)	227747	1.89190	1.9
	25 cis-1,3-Dichloropropene	75	9.877	9.865 (1.183)	204432	1.91239	1.9
	26 Toluene	92	10.375	10.350 (1.242)	363112	1.94427	1.9
	27 trans-1,3-Dichloropropene	75	10.624	10.599 (1.272)	131995	1.91260	1.9
	28 1,1,2-Trichloroethane	83	10.932	10-907 (1.309)	72103	1.97222	2.0
	29 Tetrachloroethene	166	11.240	11.230 (1.346)	269961	1.93035	1.9
	30 1,3-Dichloropropane	76	11.211	11.200 (1.342)	137628	1.82535	1.8
	31 Dibromochloromethane	129	11.636	11.611 (1.393)	147891	1.86747	1.9
	32 1,2-Dibromoethane .	107	11.900	11.875 (1.425)	114515	1.94437	1.9
	33 Chlorobenzene	112	12.868	12.843 (1.541)	435430	1.96259	2.0
	34 1,1,1,2-Tetrachloroethane	131	13.000	12.975 (1.557)	193455	1.95725	2.0
	35 Ethylbenzene	91	13.059	13.048 (1.564)	781032	1.96655	2.0
М	38 Xylene (Total)	100			853653	5.69560	5.7
	36 m+p-Xylene	106	13.323	13.298 (1.595)	588124	3.78706	3.8
	37 o-Xylene	106	14.232	14.207 (1.704)	265528	1.90971	1.9
	39 Styrene	104	14.247	14.236 (1.706)	349276	1.69128	1.7
	40 Bromoform	173	14.643	14.618 (1.753)	67901	1.79461	1.8
	41 Isopropylbenzene	105	14.936	14.926 (1.788)	799918	1.86200	1.9
\$	42 4-Bromofluorobenzene (SUR)	95	15.229	15.219 (1.824)	728916	4.86135	4.9
7	43 1,1,2,2-Tetrachloroethane	83	1.5.420	15.410 (1.846)	97146	1.94015	1.9
	45 1,2,3 Trichloropropane	110	15.538	15.513 (1.861)	23937	1.85514	1.8
	44 Bromobenzene	156	15.538	15.528 (1.861)	163910	1.81450	1.8
	46 n-Propylbenzene	91	15.670	15.660 (1.876)	935996	1.90090	1.9
	47 2-Chlorotoluene	91	15.846	15.836 (1.897)	551429	1.89859	1.9
	48 1,3,5-Trimethylbenzene	105	15.964	15.954 (1.912)	613345	1.90157	1.9
	49 4-Chlorotoluene	91	16.023	16.013 (1.919)	600095	1.89440	1.9
	50 tert Butylbenzene	119	16.551	16.541 (1.982)	689690	1.91989	1.9
	51 1,2,4-Trimethylbenzene	105	16.639	16.630 (1.992)	603183	1.97205	2.0
	52 sec-Butylbenzene	105	16.962	16.938 (2.031)	839532	1.83740	1.8
	54 4-Isopropyltoluene	119	17.212	17.202 (2.061)	758679	1.90276	1.9
	53 m-Dichlorobenzene	146	17.182	17.173 (2.058)	330521	1.93048	1.9
	55 p-Dichlorobenzene	146	17.344	17.335 (2.077)	326061	1.96112	2.0
	56 n-Butylbenzene	91	18.020	18.010 (2.158)	670320	1.84693	1.8
\$	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.064	18.040 (2.163)	424862	4.78947	4.8
7	58 o-Dichlorobenzene	146	18.093	18.084 (2.167)	254830	1.94934	1.9
	59 1,2-Dibromo-3-Chloropropane	75	19.634	19.640 (2.351)	13673	1.68157	1.7
	60 1,2,4-Trichlorobenzene	180	21.381	21.372 (2.560)	163140	1.78404	1.8
	61 Hexachlorobutadiene	225	21.733	21.725 (2.602)	152976	1.93459	1.9
	62 Naphthalene	128	21.939		166378	1.93128	1.9
	<u>P</u>				2000,0	1.33120	1.7

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40860.d Report Date: 17-Mar-2006 12:49

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
	====	==			======	
63 1,2,3-Trichlorobenzene	180	22.512	22.489 (2.696)	127684	1.90593	1.9

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40861.d

Report Date: 20-Mar-2006 10:42

## STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40861.d

Lab Smp Id: 1425BSD

Inj Date : 17-MAR-2006 13:03

Operator : VOAMS 5 Smp Info : 1425BSD Inst ID: VOAMS5.i

Misc Info: Comment

: /chem/VOAMS5.i/524/03-17-06/17mar06.b/524_2_05.m Method Meth Date : 17-Mar-2006 12:21 lily Quant Type: ISTD Cal Date : 17-MAR-2006 12:01 Cal File: e40859.d

Als bottle: 10 QC Sample: BSD

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: 524.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vo	25.00000	Sample Volume

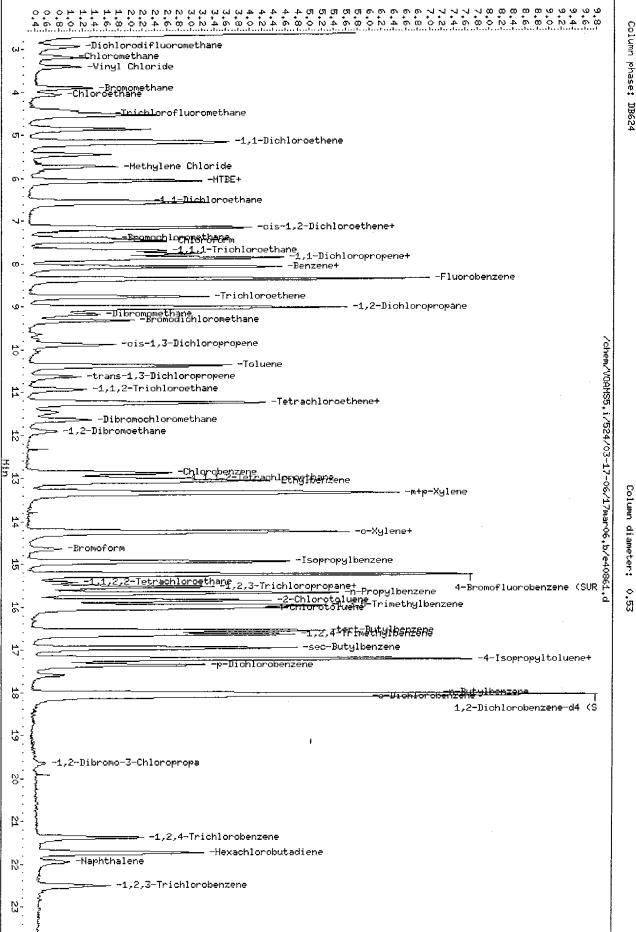
Cpnd Variable

Local Compound Variable

						CONCENTRA	RIONS
		QUANT \$1G		•		ON-COLUMN	FINAL
Compounds		MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
		- dese				======	*****
1 Dichlorodifluoromethane		85	2.924	2.910 (0.350)	255314	2.39231	2.4
3 Chloromethane		50	3.174	3.175 (0.380)	178534	2.46959	2.5
4 Vinyl Chloride		62	3.409	3.395 (0.408)	185261	2.38546	2.4
5 Bromomethane		94	3.907	3.880 (0.468)	159621	2.20674	2.2
6 Chloroethane		64	4.054	4.026 (0.485)	113969	2.27782	2.3
7 Trichlorofluoromethane		101	4.494	4.467 (0.538)	360580	2.40782	2.4
8 1,1-Dichloroethene		61	5.139	5.112 (0.615)	278480	2.48749	2.5
9 Methylcne Chloride		84	5.726	5.699 (0.686)	133588	2.41468	2.4
110 MTBE		73	6.048	6.022 (0.724)	189699	2.20147	2.2
10 trans-1,2-Dichloroethene	<u> </u>	96	6.063	6.036 (0.726)	195604	2.44743	2.4
11 1,1-Dichloroethane		63	6.518	6.491 (0.780)	334722	2.29117	2.3
12 cis-1,2-Dichloroethene	*	96 '	7.148	7.122 (0.856)	179423	2.31386	2.3
13 2,2-Dichloropropane		77	7.163	7.136 (0.858)	281338	2.26838	2.3
14 Bromochloromethane		128	7.397	7.371 (0.886)	71548	2.32523	2.3
15 Chloroform		83	7.456	7.430 (0.893)	310766	2.27151	2.3
16 1,1,1-Trichloroethane		97	7.691	7.664 (0.921)	306105	2.27630	2.3

Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40861.d Report Date: 20-Mar-2006 10:42

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
==		====	<b>32 22</b>	E = = = = = = = = = = = = = = = = = = =		3=====	
	17 1,1-Dichloropropene	75	7.852	7.826 (0.940)	259801	2.18522	2.2
	18 Carbon Tetrachloride	117	7.867	7.855 (0.942)	291400	2.31110	2.3
	19 Benzene	78	8.072	8.046 (0.967)	500674	2.30883	2.3
	20 1,2-Dichloroethane	62	8.072	8.046 (0.967)	111246	2.25469	2.2
*	2 Fluorobenzene	96	8.351	8.325 (1.000)	1218295	5.00000	
	21 Trichloroethene	95	8.762	8.736 (1.049)	224520	2.31625	2.3
	22 1,2-Dichloropropane	63	9.026	9.000 (1.081)	168278	2.22963	2.2
	23 Dibromomethane	93	9.172	9.147 (1.098)	77926	2.21703	2.2
	24 Bromodichloromethane	83	9.319	9.293 (1.116)	241155	2.28746	2.3
	25 cis-1,3-Dichloropropene	75	9.876	9.865 (1.183)	204940	2.18911	2.2
	26 Toluene	92	10.375	10.350 (1.242)	381783	2.33424	2.3
	27 trans-1,3-Dichloropropene	75	10.639	10.599 (1.274)	126906	2.09973	2.1
	28 1,1,2-Trichloroethane	83	10.932	10.907 (1.309)	70659	2.20691	2.2
	29 Tetrachloroethene	166	11.255	11.230 (1.348)	276527	2.25780	2.2
	30 1,3-Dichloropropane	76	11.226	11.200 (1.344)	145464	2.20296	2.2
	31 Dibromochloromethane	129	11.636	11.611 (1.393)	147994	2.13387	2.1
	32 1,2-Dibromoethane	107	11.915	11.875 (1.427)	116511	2.25891	2.2
	33 Chlorobenzene	112	12.867	12.843 (1.541)	440962	2.26949	2.3
	34 1,1,1,2-Tetrachloroethane	131	13.000	12.975 (1.557)	188398	2.17649	2.2
	35 Ethylbenzene	91	13.058	13.048 (1.564)	802396	2.30695	2.3
М	38 Xylene (Total)	100			878034	6.68934	6.7
	36 m+p-Xylene	106	13.323	13.298 (1.595)	603946	4.44064	4.4
	37 o-Xylene	106	14.232	14.207 (1.704)	274088	2.25091	2.2
	39 Styrene	104	14.246	14.236 (1.706)	349174	1.93065	1.9
	40 Bromoform	173	14.642	14.618 (1.753)	68512	2.06761	2.1
	41 Isopropylbenzene	105	14.950	14.926 (1.790)	818699	2.17607	2.2
\$	42 4-Bromofluorobenzene (SUR)	95	15.243	15.219 (1.825)	751822	5.72543	5.7
	43 1,1,2,2-Tetrachloroethane	83	15.434	15.410 (1.848)	101525	2.31524	2.3
	45 1,2,3-Trichloropropane	110	15.537	15.513 (1.861)	24962	2.20899	2.2
	44 Bromobenzene	156	15.537	15.528 (1.861)	170878	2.15998	2.2
	46 n-Propylbenzene	91	15.684	15.660 (1.878)	962509	2.23205	2.2
	47 2-Chlorotoluene	9.1	15.846	15.836 (1.897)	591951	2.32724	2.3
	48 1,3,5-Trimethylbenzene	105	15.963	15.954 (1.912)	652034	2.30829	2.3
	49 4-Chlorotoluene	91	16.037	16.013 (1.920)	647920	2.33553	2.3
	50 text-Butylbenzene	119	16.550	16.541 (1.982)	714409	2.27082	2.3
	51 1,2,4-Trimethylbenzene	105	16.638	16.630 (1.992)	618417	2.30868	2.3
	52 sec-Butylbenzene	105	16.961	16.938 (2.031)	862371	2.15513	2.2
	54 4-Isopropyltoluene	119	17.211	17.202 (2.061)	789511	2.26098	2.3
	53 m-Dichlorobenzene	1.46	17.196	17.173 (2.059)	338090	2.25482	2.2
	55 p-Dichlorobenzene	146	17.358	17.335 (2.079)	332469	2.28333	2.3
	56 n-Butylbenzene	91	18.019	18.010 (2.158)	698057	2.19620	2.2.
\$	57 1,2-Dichlorobenzene-d4 (SUR)	152	18.048	18.040 (2.161)	442799	5.69981	5.7
7	58 o-Dichlorobenzene	146	18.092	18.084 (2.166)	261958	2.28814	2.3
	59 1,2-Dibromo-3-Chloropropane	75	19.633	19.640 (2.351)	15157	2.12849	2,1
	60 1,2,4-Trichlorobenzene	180	21.378	21.372 (2.560)	164528	2.05446	2.0
	61 Hexachlorobutadiene	225	21.746	21.725 (2.604)	155632	2.24739	2.2
	62 Naphthalene	128	21.740		161505	2.14066	2.1
	os nabucuatene	120	∠ ¼ . ≯⊃∠	Z4.731 (Z.0Z7)	101303	2.1100	2.4


Data File: /chem/VOAMS5.i/524/03-17-06/17mar06.b/e40861.d Report Date: 20-Mar-2006 10:42

					CONCENTRA	TIONS
	QUANT \$1G				ON - COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
	====	==		========	=======	
63 1.2.3-Trichlorobenzene	180	22.509	22.489 (2.695)	121057	2.06336	2.1

Sample Info:

1425BSD 25.0

Purge Volume:



Y (x10⁵)

# VOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY SUMMARY METHOD 524.2

Matrix: WATER

QA Batch: 1427

Level: DW

·	SPIKE ADDED	BS %	BSD	
Compound	(ug/L)	REC.	REC.	RPD
	=======	=======	=======	========
Acetone	20	100	120	18.2
2-Butanone	20	120	115	4.3
4-Methyl-2-pentanone	20	120	110	8.7
2-Hexanone	20		105	4.7
Carbon Disulfide	20		85	6.1
Diethyl Ether	20		100	4.9
Iodomethane	20	95	90	5.4
Allyl Chloride	20	90	90	0.0
Acrylonitrile	200		110	4.4
Propionitrile	200		115	8.3
Methyl Acrylate	20	115	110	4.4
Methacrylonitrile	20	110	105	4.7
Tetrahydrofuran	20	115	120	4.3
1-Chlorobutane	20	90	85	5.7
Methyl Methacrylate	20	130	115	12.2
2-Nitropropane	200	115	110	4.4
Chloroacetonitrile	200	120	115	4.3
1,1-Dichloropropanone	20	120	125	4.1
Ethyl Methacrylate	20	125	110	12.8
trans-1,4-Dichloro-2-but	20	110	100	9.5
Pentachloroethane	20	100	95	5.1
Hexachloroethane	20	90	90	0.0
Nitrobenzene	200	120	115	4.3

^{*} Values outside of QC limits

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40862.d

Report Date: 20-Mar-2006 13:34

#### STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file : /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40862.d Lab Smp Id: 1427BS Client Smp ID: 1427BS

Inj Date : 17-MAR-2006 13:33

Operator : VOAMS 5 Smp Info : 1427BS-R4 Inst ID: VOAMS5.i

Misc Info :

Comment

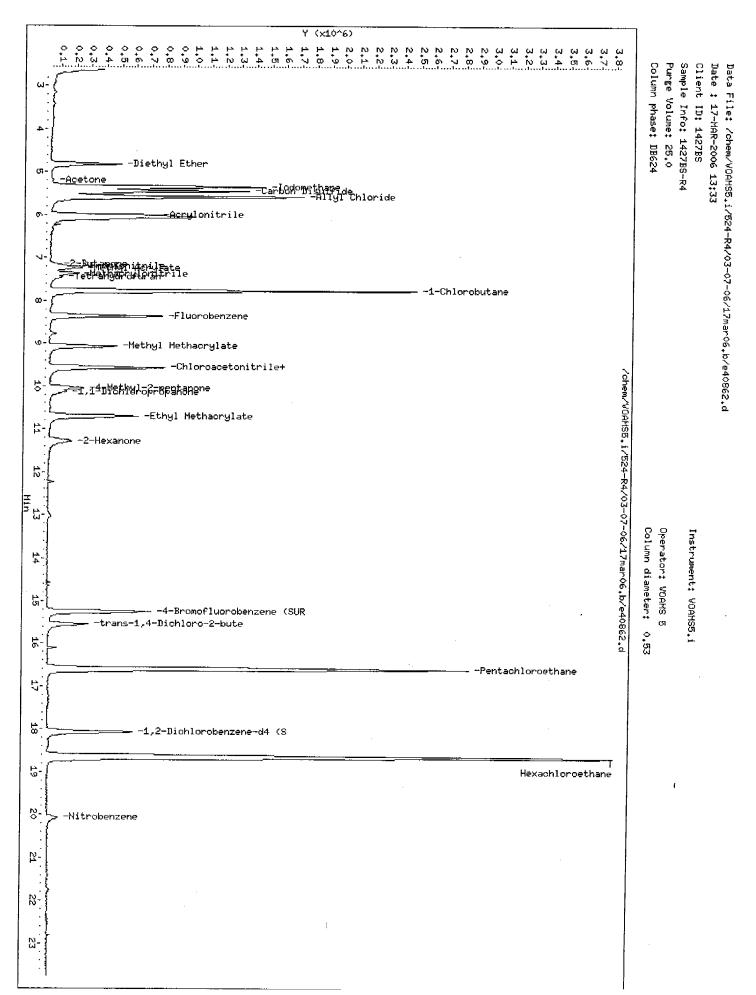
Method : /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:34 lily Quant Type: ISTD Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d

Als bottle: 11 QC Sample: BS Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable


Name	Value	Description
DF Vo	1.00000	Dilution Factor Sample Volume

Cpnd Variable Local Compound Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
	====	==	=======================================		=======	======
125 Diethyl Ether	59	4.816	4.787 (0.576)	649273	20.7629	. 21
113 Acetone	43	5.212	5.168 (0.623)	51296	20.3902	20
126 Iodomethane	142	5.343	5.315 (0.639)	3569750	18.6893	19
120 Carbon Disulfide	76	5.446	5.418 (0.651)	3835552	16.1401	16
127 Allyl Chloride	<b>7</b> 6	5.578	5.550 (0.667)	964499	18.3261	18
128 Acrylonitrile	52	6.003	5.975 (0.718)	776906	232.864	230
114 2-Butanone	43	7.147	7.119 (0.854)	167006	24.3701	24
129 Propionitrile	54	7.205	7.177 (0.862)	298050	248.174	250
130 Methyl Acrylate	55	7.235	7.207 (0.865)	458274	22.8945	23
131 Methacrylonitrile	67	7.367	7.339 (0.881)	121735	22.0666	. 22
132 Tetrahydrofæran	71	7.455	7.441 (0.891)	31109	22.9753	23
133 1-Chlorobutane	56	7.763	7.749 (0.928)	3945305	17.9480	18
* 2 Fluorobenzene	96	8.364	8.336 (1.000)	1416955	5.00000	
134 Methyl Methacrylate	69	9.067	9.054 (1.084)	443859	25.9228	26
136 Chloroacetonitrile	48	9.566	9.538 (1.144)	84945	236.155	240
135 2-Nitropropane	43	9.566	9.553 (1.144)	1262106	231.682	230

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40862.d Report Date: 20-Mar-2006 13:34

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
=======================================	====	==	=======================================	E=====		======
115 4-Methyl-2-pentanone	43	10.035	10.007 (1.200)	436751	23.9159	24
137 1,1-Dichloropropanone	43	10.138	10.110 (1.212)	339870	24.0332	24
138 Ethyl Methacrylate	69	10.695	10.667 (1.279)	891138	24.8676	25
119 2-Hexanone	43	11.296	11.269 (1.351)	260630	22.4085	22
\$ 42 4-Bromofluorobenzene (SUR)	95	15.238	15.226 (1.822)	723739	4.41874	4.4
139 trans-1,4-Dichloro-2-butene	53	15.546	15.519 (1.859)	159490	21.7069	22
140 Pentachloroethane	167	16.603	16.576 (1.985)	1327858	20.4113	20
\$ 57 l,2-Dichlorobenzene-d4 (SUR)	152	18.055	18.044 (2.159)	412774	4.26804	4.3
141 Hexachloroethane	117	18.643	18.617 (2.229)	2791961	18.5989	18
142 Nitrobenzene	51	20.066	20.041 (2.399)	81826	241 262	240



Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40863.d Report Date: 20-Mar-2006 13:34

### STL Edison

VOLATILE ORGANICS- METHOD 524.2

Data file: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40863.d

Lab Smp Id: 1427BSD-R4

Inj Date : 17-MAR-2006 14:03

Operator : VOAMS 5 Smp Info : 1427BSD-R4 Inst ID: VOAMS5.i

Misc Info : Comment

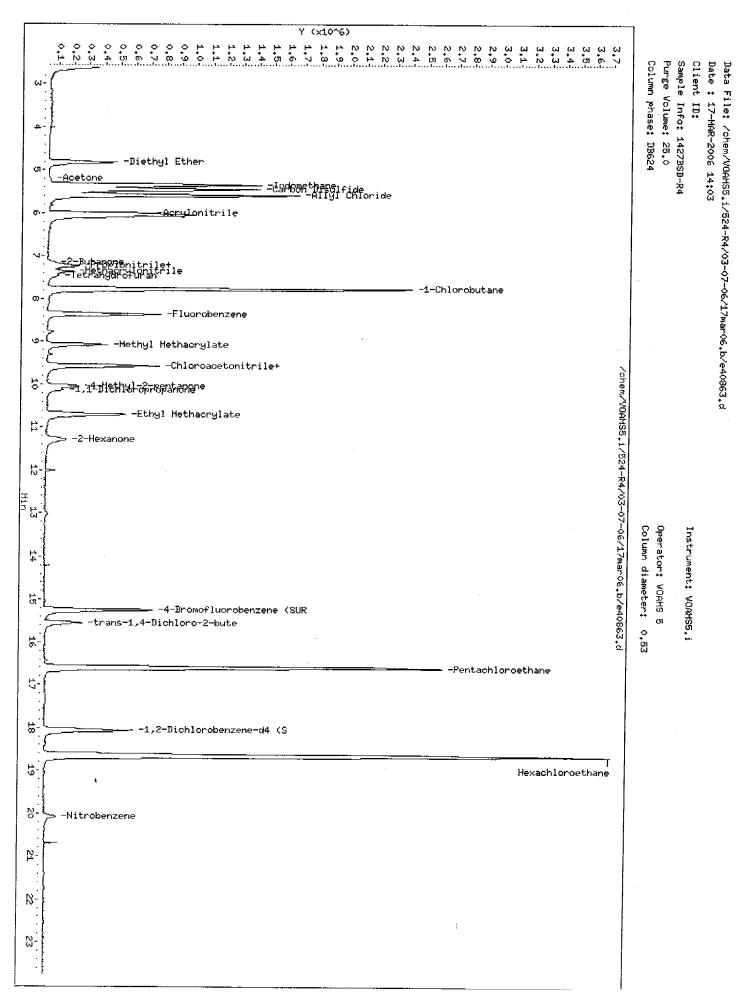
Method : /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/524R4_04.m Meth Date : 20-Mar-2006 13:34 lily Quant Type: ISTD Cal Date : 07-MAR-2006 15:17 Cal File: e40746.d QC Sample: BSD

Als bottle: 12 Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: all.sub

Target Version: 3.50 Processing Host: hpd2

Concentration Formula: Amt * DF * 25/Vo * CpndVariable


Name	Value	Description
		<del></del>
DF	1.00000	Dilution Factor
٧o	25.00000	Sample Volume

Cpnd Variable Local Compound Variable

					CONCENTRA	ATIONS
	QUANT SIG	;			ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
=======================================	====	==	EUSIE		~~***	======
125 Diethyl Ether	59	4.817	4.787 (0.576)	614394	19.6426	20
113 Acetone	43	5.199	5.168 (0.621)	60812	24.1668	24
126 Iodomethane	142	5.345	5.315 (0.639)	3459781	18.1090	18
120 Carbon Disulfide	76	5,448	5.418 (0.651)	4002683	16.8392	17
127 Allyl Chloride	76	5.580	5.550 (0.667)	950481	18.0552	18
128 Acrylonitrile	52	6.006	5-975 (0.718)	721369	216.164	220
114 2-Butanone	43	7.150	7.119 (0.854)	157527	22.9812	23
129 Propionitrile	54	7.209	7.177 (0.862)	278579	231.903	230
130 Methyl Acrylate	55	7.238	7.207 (0.865)	438459	21.8991	22
131 Methacrylonitrile	67	7.370	7.339 (0.881)	117044	21.2110	21
132 Tetrahydrofuran	71 -	7.458	7.441 (0.891)	32739	24.1730	24
133 1-Chlorobutane	56	7.766	7.749 (0.928)	3815440	17.3529	17
* 2 Fluorobenzene	96	8.368	8.336 (1.000)	1417310	5.00000	
134 Methyl Methacrylate	69	9.072	9.054 (1.084)	389216	22.7257	23
136 Chloroacetonitrile	48	9.571	9.538 (1.144)	82694	229.840	230
135 2-Nitropropane	43	9.571	9.553 (1.144)	1188576	218.129	220

Data File: /chem/VOAMS5.i/524-R4/03-07-06/17mar06.b/e40863.d Report Date: 20-Mar-2006 13:34

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	ınds	MASS	RT	EXP RT REL RT	RESPONSE	( ug/L)	( ug/L)
			==		======		****==
115	4-Methyl-2-pentanone	43	10.040	10.007 (1.200)	410720	22.4849	22
137	1,1-Dichloropropanone	43	10.128	10.110 (1.210)	354866	25.0873	25
138	Ethyl Methacrylate	69	10.700	10.667 (1.279)	797650	22.2532	22
119	2-Hexanone	43.	11.301	11.269 (1.351)	241155	20.7289	21
\$ 42	4-Bromofluorobenzene (SUR)	95	15.244	15.226 (1.822)	724544	4.42255	4.4
139	trans-1,4-Dichloro-2-butene	53	15.552	15.519 (1.859)	148868	20.2561	20
140	Pentachloroethane	167	16.608	16.576 (1.985)	1252145	19.2426	19
\$ 57	1,2-Dichlorobenzene-d4 (SUR)	152	18.061	18.044 (2.158)	414424	4.28403	4.3
141	Hexachloroethane	117	18.648	18.617 (2.229)	2696048	17.9555	18
142	Nitrobenzene	51	20.057	20.041 (2.397)	78968	232.777	230



Internal Standard Area and RT Summary

Lab File ID (Standard): E40853 Date Analyzed: 03/17/06

Instrument ID: VOAMS5 Time Analyzed: 0823

		IS1				1	T
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD UPPER LIMIT LOWER LIMIT	1414562 2829124 990193	8.32 8.82 7.82				
	LABORATORY SAMPLE NO.		<b>*===</b> ==	========	=====	=======	======
01	1425BS	1391125	8.35				======
02	1425BSD EV076	1218295 1377022	8.35 8.36				
04 05 06							
06 07 08							
09							
11 12							
13 14							
15 16							
17 18							
19 20							
21 22							

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 30% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab File ID (Standard): E40853

Date Analyzed: 03/17/06

Instrument ID: VOAMS5

Time Analyzed: 0823

	IS1 AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT	1414562 2829124 990193	8.32 8.82 7.82				
LABORATORY SAMPLE NO.	=========			=====	=======	
01 EV076 02 715155	1377022 1433776	8.36 8.37				
04						
07 08 09						
10 11 12						
13 14 15						
16 17 18						
20 21						
22						

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 30% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab File ID (Standard): E40858

Date Analyzed: 03/17/06

Instrument ID: VOAMS5

Time Analyzed: 1130

	IS1					<del></del> ı
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT	1279227 2558454 895459	8.34 8.84 7.84				
LABORATORY SAMPLE NO.	<del></del>	. ======				= = = = =     
01 1427BS 02 1427BSD-R4	1416955 1417310	8.36 8.37				
03 EV076A 04 05	1398660	8.36				
06 07 08						
09 10 11						
12 13 14						
15 16						
17 18 19						
20 21 22						

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -30% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab File ID (Standard): E40858 Date Analyzed: 03/17/06

Instrument ID: VOAMS5 Time Analyzed: 1130

1	IS1				I	
	AREA #	RT #	AREA #	1 "	AREA #	RT #
12 HOUR STD UPPER LIMIT LOWER LIMIT	1279227 2558454 895459	8.34 8.84 7.84				
LABORATORY SAMPLE NO.			_ <del></del>	======		======
01 EV076A 02 715155	1398660 1450458	8.36 8.37				
03 04 05						
06 07 08						
09 10 11						
12 13						
14 15 16						
17 18 19						
20 21 22						

IS1 = Fluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -30% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Injection Log Book

STL EDISON ANALYTICAL INJECTION LOG SUMMARY

incent ID: VOAMSS.i .
ical Batch: /chem/VOAMSS.i/524/03-17-06/17mar06.b

Jenerated: 03/20/2006

		<u> </u>		<del>-,</del> -						_, _			<u> </u>		
COMMENTS		Ú			2 (						5 C				D (
STD		524.2	GAS 50: V06143	MIX1 50:   4     MTBE/TF:	TBA: (0.5)	GAS BS:	82608S:  573  524R4 BS:	5/58;   5/3/5/	BFB 5S:			:			
— Hd — —													9		
LPB	_											2			
Sublist		all	ail	all	all	all	all	all	524	524	ali	524	524	524	524
Dil		<u>~</u> _													<u> </u>
		<del></del> -		<u> </u>	=.			<u> </u>	<u>-</u>		<u> </u>	_	<u> </u>	<u> </u>	
		<u>o</u> _			0			0	0	0	0.	0			
. WI															
		<u> </u>	25.	25			725		252	[25	125	25	425 25	425   25	425 25
#	_					-   - 						N911	0521  14	0523   14	0524 14
crrent 1D													840SMST	1LOCK	476LOCK
	-			<u> </u>	<u> </u>		] ]	-	<del> </del>	<u> </u>	<u> </u>	8	M	P 481LOCK	7
ID		EBFB076	ESTD002	ESTD001	ESTD005	ESTD020	ESTD040	ESTD001	1425BS	(1425BSD	EV076	712293 Q	715152	715154	715155
		EB	12 ES	SE   3	2 SE	5   ES	6 ES	[8] ES	9 14.	10 14	13 EV	14 71	115   71	16 71.	17 71
File		0/52 e40852,d	0823   e40853, d.	0924;e40854.d	0954 e40855.d	1025 e40856.d	1055 e40857.d	1201 e40859.d	1233 e40860.d	1303 e40861.d	1433 e40864.d	1503   e40865.d	1533 e40866.d	1603 e40867.d	1633je40868.d
		100 0/35/	) 06 0823   s	/06 0924	/06 0954	/06 1025	/06 1055 6	/06 1201 6	/06 1233]e	/66 1303 6	/06 1433   6	/06 1503   6	/06 1533   6	/06 1603   e	/06 1633]e

ANALYTICAL INJECTION LOG SUMMARY STL EDISON

tical Batch: /chem/VOAMS5.i/524/03-i7-06/17mar06.b ument ID: VOAMSS.i

Generated: 03/20/2006

Date Data	ALS	Sample -	ler	Client ID	Job	OA   IV/	FV	l pil	Subitat	50.1	_	- C	
File		QI			#	_		Fac	787	g 		sin   LoT	COMMENTS
7/06 1702 040000 3	, c	- 1	]										
000000000000000000000000000000000000000	o <del>1</del> —		₽Ç> ———	B 441LUCK	0527	1425 25	<u> </u>	<u></u> -	524				
7/06 1732 e40870.d   19 1715165	1 9	1715166		433100V	1 0 0 1 0					0/000			5
	<u>:                                    </u>	1	A	D   43 (2000)	B700	1425   25  - 	<u> </u>	<b>-</b>	524		بور د	·	_
7/06 1802 e40871.d  20  715188	120	715188		425T.O.UV	100	10100							5
	) 		3	(2) 1453EVCK	1560	1425 25	<u> </u>	П.	524			_	
7/06 1832 640872 d 191   3151 00	10.1			4001001	7 -						0 :		
	- - -		$\mathcal{Q}$	D 480mock	0532	1425 25	<u> </u>	·.	524		 	_	_
1/06 1000 COOL 30/1	2	1									ا د		ם
1,00 1302   4,0013:00   22   1,15190	77 -	06191/	D	D 700LOCK	0533	1425   25	<u>0</u>	<u>.</u>	524		_	-	. (
											_ ھ <u>-</u>	_	5
7/06 1932 e40874.d  23  715192	73	715192	Č  RT22	RIZZ	0535	1425 25	. 0	1	524		     		
	_		_			_		_		> -	 جـ		

Read and Understood by: Date:

STL Edison

STL EDISON

ANALYTICAL INJECTION LOG SUMMARY

lytical Batch: /chem/VOAMS5.i/524-R4/03-07-06/07mar06.b trument ID: VOAMS5.i

e Generated: 03/08/2006

ALS   Sam	Sam	Sample	Client ID	Job	- 40	/AI	- E	Lid	Sublist	TPB   P	OTS   HG	COMMENTS
ਜ – ਜ –				# <b></b>		<b>3</b> 4		Fac	<b>100</b>		loi	
2 EBFB066a	BFB066a	<u> </u>				0	<u> </u>	1	  a11			
6 ESTD020-R4	STD020-R4	<u> </u>				25	0 .	<u></u>	118		l	
7   ESTD020-R4	STD020-R4					25			  all		MIX1 50;	
10 ESTD040-R4	STD040-R4	; — -				25			a11		TBA:	5 (
11 ESTD005-R4	STD005-R4					25	0 -	<u> </u>	all			5
12   1273BSD-R4	273BSD-R4	<u> </u>		 		25	0	<u> </u>	-  all		8260BS:   524R4 BS	
13 EV066a	V066a	<del>!</del> — –				25	0 -	<u> </u>	  a11	Toolsha !	1 56-(0) 18/88: 1.18.07)53	D C
15   712405 A   61479		1 2 _	479	N949	1273 25	25		- <del>-</del> -	ACE	-¦	BFB SS:	-
16 712407 (61481		1 6 ~	481	N949	273	25		11	ACE	<u>-</u>	 	D (1
17  712408   B   61		<u></u>	61482	N949	1273   25	25	0 _	1 - 1	ACE			
18   712401   61477		9 _	1477	N947	1273 25	25		<u> </u>	ACE		 - - -	
19  712402   6		9	61478	N947	1273	25	<u> </u>	1 -	ACE		<u> </u>	5 (
20 712400 B 6	क		61476	N947	1273   25	25	0 -		ACE			7 2 2
21 712406 B 61480		9 _	1480	N949	1273   25	25	<u> </u>	10	ACE			*
		<u> </u>									2	マック マメン

Read and Understood by:__

126

STL EDISON
ANALYTICAL INJECTION LOG SUMMARY

ANALYTICAL INJECTION LO
ument ID: VOAMS5.1
tical Batch: /chem/VOAMS5.1/524-R4/03-07-06/17mar06.b

Generated: 03/20/2006

File 0752 e40852a.	- -					-	1	ner tone			COMMENTS	
		ΙD		#	MI	<u> </u>	Fac			LOT	. — -	<b>-</b>
_	2   EBFB076a	16a			0 _	0 -	1 .	all				
1130 e40858.d	7   ESTD076-R4	16-R4			25	0		all		-i. 524.2   GAS 50:	J (	<del>-</del>
1333 e40862.d	11   1427BS-R4	3-R4			25		1 -1 -	all		-1. MIX150:	5 (	<u> </u>
1403 e40863.d	12   1427BSD-R4	ID-R4			25		1 1	all		L. TBA:	5 (	<u> </u>
7/06 1433 e40864a.	13 EV076a				522			  a11	[	-1. 524R4: V66 ~10( GAS BS:		_  -
1533 e40866a.	15 715152	W	B40SMST	0521	1427 2,5	0	[1]	all	1	<del>-</del>		
1603 e40867a.	16 715154	49	481LOCK	0523	1427 25	0		a11	9 -	1 506-(02) 18/58: 1.P. 1753		
1633 e40868a.	17 715155	6	476LOCK	0524	1427 25	0 _		all	1 1 2		1	
1702 e40869a.	18 715165	4	441LOCK	0527	1427   25	0 -		all		- ,	7	
7/06 1732 e40870a.	19   715166	Δ,	437LOCK	0528	1427   25	0 .		all		_,		
1802 e40871a.	20 715188	40	425LOCK	0531	1427   25	0 _		ali	ئِد او ا ا			
1832 e40872a.	21  715189	۵	480LOCK	0532	1427   25	0 _	1	a]]			T (4	<u> </u>
1902 e40873a.	22  715190	۵	700LOCK	0533	1427 25	0 -	<u> </u>	all	2		- (t	
1932 e40874a.	23 715192	\(\psi\)	RT22	0535	1427   25	0 _		all	3 -			<u> </u>

ob Read and Understood by: Www 72 3.20.0 6

0524

This is the Last Page of the Document